神经网络核心组件和流程梳理

文章目录

神经网络核心组件和流程梳理

组件

  • 层:神经网络的基本结构,将输入张量转换为输出张量。
  • 模型:由层构成的网络。
  • 损失函数:参数学习的目标函数,通过最小化损失函数来学习各种参数。
  • 优化器:如在使损失值最小时,就会涉及优化器。

流程

  1. 多个层链接在一起构成一个模型或网络,输入数据通过这个模型转换为预测值。
  2. 预测值与真实值共同构成损失函数的输入,损失函数输出损失值(损失值可以是距离、概率值等),该损失值用于衡量预测值与目标结果的匹配或相似程度。
  3. 优化器利用损失值计算关于各个权重参数的梯度,将权重参数沿梯度方向进行微小的更新,目标是使损失值越来越小,这是一个循环过程,当损失值达到一个阙值或循环次数到达指定次数时,循环结束。
相关推荐
猫头虎几秒前
Claude Code 2026 年1月9日迎来大更新:Agent 能力增强(2.1.0 详解 + 升级指南)
ide·人工智能·macos·langchain·编辑器·aigc·ai编程
子午3 分钟前
【2026原创】中草药识别系统实现~Python+深度学习+模型训练+人工智能
人工智能·python·深度学习
编码小哥11 分钟前
OpenCV特征匹配:暴力匹配与FLANN匹配实战
人工智能·opencv·计算机视觉
数字游民952716 分钟前
网站备案全流程回放(腾讯云)
人工智能·git·github·腾讯云·网站备案·waytoopc
飞哥数智坊19 分钟前
3位实战分享、6个案例展示,TRAE Friends@济南第二场圆满完成
人工智能·ai编程·trae
xiaobaishuoAI20 分钟前
全链路性能优化实战指南:从瓶颈定位到极致优化
大数据·人工智能·科技·百度·geo
人工小情绪20 分钟前
深度学习模型部署形式
人工智能·深度学习
AI_567822 分钟前
零基础学Linux:21天从“命令小白”到独立部署服务器
linux·服务器·人工智能·github
乾元24 分钟前
如何把 CCIE / HCIE 的实验案例改造成 AI 驱动的工程项目——从“实验室能力”到“可交付系统”的完整迁移路径
大数据·运维·网络·人工智能·深度学习·安全·机器学习
kisshuan1239624 分钟前
【深度学习】【目标检测】基于Mask R-CNN的鱼类尾巴检测与识别
深度学习·目标检测·r语言