GAN:GAN论文学习

论文:https://arxiv.org/pdf/1406.2661.pdf

发表:2014

一、GAN简介:Generative Adversarial Network

GAN是由Ian Goodfellow于2014年提出,GAN:全名叫做生成对抗网络。GAN的目的就是无中生有,以假乱真。

GAN由两部分构成:生成器G + 判别器D

生成器:将随机输入的高斯噪声映射成图像("假图")

判别器:判断输入图像是否来自生成器的概率,即判断输入图像是否为假图的概率。

二、GAN与CNN训练过程的区别

CNN的训练:定义好特定的损失函数,然后利用梯度下降优化参数,尽可能用局部最优解去逼近全局最优解。

GAN的训练:动态的过程,是生成器G 与判别器D 之间的相互博弈过程。通俗点讲,即要使得生成器G 生成的所谓的"假图"骗过判别器D ,那么最优状态就是生成器G 生成的所谓的"假图"在判别器D 的判别结果为0.5,不知道到底是真图还是假图。

三、GAN的公式推导

通俗理解GAN(一):把GAN给你讲得明明白白 - 知乎

G 代表生成器,

D 代表判别器,

x 代表真实数据,

p_data代表真实数据概率密度分布,

z代表了随机输入数据,该数据是随机高斯噪声。

相关推荐
墨迹的陌离5 分钟前
【Linux】重生之从零开始学习运维之主从MGR高可用
学习
ALLMHUB6 分钟前
【附API无限制使用方法】Claude Opus 4.1正式上线:智能编程助手的新里程碑
人工智能
老周聊大模型11 分钟前
让AI对话像流水般自然:深入大模型Streaming技术核心源码
人工智能·机器学习·程序员
康斯坦丁师傅16 分钟前
最强编程模型Claude Opus 4.1上线:附保姆级使用教程
人工智能·claude
小一亿18 分钟前
【0基础PS】PS工具详解--直接选择工具
学习·平面·adobe·信息可视化·传媒·photoshop
聚客AI25 分钟前
💡小白都能看懂的RAG分块实战:从递归分割到LLM智能拆解的全解析
人工智能·llm·掘金·日新计划
AI必将改变世界25 分钟前
【软考系统架构设计师备考笔记5】 - 专业英语
java·开发语言·人工智能·笔记·系统架构·英语
喵王叭36 分钟前
【大模型实战】向量数据库实战 - Chroma & Milvus
数据库·人工智能·langchain
NewCarRen36 分钟前
基于AI的自动驾驶汽车(AI-AV)网络安全威胁缓解框架
人工智能·自动驾驶·汽车
2501_924879361 小时前
密集表盘漏检率↓79%!陌讯多模态融合算法在电表箱状态识别的边缘优化
人工智能·算法·计算机视觉·目标跟踪·智慧城市