GAN:GAN论文学习

论文:https://arxiv.org/pdf/1406.2661.pdf

发表:2014

一、GAN简介:Generative Adversarial Network

GAN是由Ian Goodfellow于2014年提出,GAN:全名叫做生成对抗网络。GAN的目的就是无中生有,以假乱真。

GAN由两部分构成:生成器G + 判别器D

生成器:将随机输入的高斯噪声映射成图像("假图")

判别器:判断输入图像是否来自生成器的概率,即判断输入图像是否为假图的概率。

二、GAN与CNN训练过程的区别

CNN的训练:定义好特定的损失函数,然后利用梯度下降优化参数,尽可能用局部最优解去逼近全局最优解。

GAN的训练:动态的过程,是生成器G 与判别器D 之间的相互博弈过程。通俗点讲,即要使得生成器G 生成的所谓的"假图"骗过判别器D ,那么最优状态就是生成器G 生成的所谓的"假图"在判别器D 的判别结果为0.5,不知道到底是真图还是假图。

三、GAN的公式推导

通俗理解GAN(一):把GAN给你讲得明明白白 - 知乎

G 代表生成器,

D 代表判别器,

x 代表真实数据,

p_data代表真实数据概率密度分布,

z代表了随机输入数据,该数据是随机高斯噪声。

相关推荐
FlagOS智算系统软件栈22 分钟前
与创新者同频!与FlagOS共赴开源之约
人工智能·ai·开源
加油吧zkf2 小时前
循环神经网络 RNN:从时间序列到自然语言的秘密武器
人工智能·rnn·自然语言处理
koo3643 小时前
李宏毅机器学习笔记30
人工智能·笔记·机器学习
长桥夜波4 小时前
机器学习日报02
人工智能·机器学习·neo4j
Elastic 中国社区官方博客4 小时前
介绍 Elastic 的 Agent Builder - 9.2
大数据·运维·人工智能·elasticsearch·搜索引擎·ai·全文检索
拓端研究室4 小时前
专题:2025年制造业数智化发展白皮书:数字化转型与智能制造|附130+份报告PDF、数据、绘图模板汇总下载
人工智能
就不爱吃大米饭4 小时前
ChatGPT官方AI浏览器正式推出:ChatGPT Atlas浏览器功能及操作全解!
人工智能·chatgpt
牛客企业服务4 小时前
企业招聘新趋势:「AI面试」如何破解在线作弊难题?
人工智能·面试·职场和发展·招聘·ai招聘
infominer4 小时前
数据处理像搭乐高?详解 RAGFlow Ingestion Pipeline
人工智能·ai-native
wudl55665 小时前
华工科技(000988)2025年4月22日—10月22日
大数据·人工智能·科技