Spark_日期参数解析参数-spark.sql.legacy.timeParserPolicy

在Apache Spark中,spark.sql.legacy.timeParserPolicy是一个配置选项,它控制着时间和日期解析策略。此选项主要影响如何解析日期和时间字符串。

在Spark 3.0之前的版本中,日期和时间解析使用java.text.SimpleDateFormat,它在解析某些日期和时间格式时可能较为宽松。例如,它可能允许日期字符串中的月份部分超过12,或日期部分超过31,并尝试自动调整。这种宽松的解析方式在某些情况下可能会导致意外的结果。

从Spark 3.0开始,默认的解析策略变得更加严格,使用java.time.format.DateTimeFormatter来解析日期和时间格式。这种新的解析器严格遵守ISO标准,并且不会进行前面提到的自动调整。

spark.sql.legacy.timeParserPolicy 配置项可以设置为以下值:

  • LEGACY: 使用Spark 3.0之前的宽松解析策略。

  • CORRECTED: 使用Spark 3.0引入的新的严格解析策略。

  • EXCEPTION: 如果遇到无法解析的日期或时间字符串,则抛出异常。(不推荐,会导致作业中断)

例如,如果你想在Spark 3.0或更高版本中保持与以前版本相同的宽松解析行为,可以设置

复制代码
spark.conf.set("spark.sql.legacy.timeParserPolicy", "LEGACY")

或者在启动Spark时通过传递配置参数来设置:

复制代码
./bin/spark-submit --conf "spark.sql.legacy.timeParserPolicy=LEGACY" ...

如果你的代码中有日期和时间解析,并且你升级到了Spark 3.0或更高版本,那么你可能需要关注这个配置选项,以确保代码的兼容性和期望行为。如果你的日期和时间字符串格式严格并始终遵循ISO标准,或者你希望采用更严格的解析策略,那么你应该使用默认的CORRECTED策略。

相关推荐
The Open Group19 分钟前
英特尔公司Darren Pulsipher 博士:以架构之力推动政府数字化转型
大数据·人工智能·架构
喂完待续24 分钟前
【Tech Arch】Spark为何成为大数据引擎之王
大数据·hadoop·python·数据分析·spark·apache·mapreduce
ruleslol27 分钟前
Spark03-RDD01-简介+常用的Transformation算子
spark
三掌柜6661 小时前
NVIDIA 技术沙龙探秘:聚焦 Physical AI 专场前沿技术
大数据·人工智能
源码宝2 小时前
【智慧工地源码】智慧工地云平台系统,涵盖安全、质量、环境、人员和设备五大管理模块,实现实时监控、智能预警和数据分析。
java·大数据·spring cloud·数据分析·源码·智慧工地·云平台
百思可瑞教育3 小时前
Git 对象存储:理解底层原理,实现高效排错与存储优化
大数据·git·elasticsearch·搜索引擎
数据超市3 小时前
香港数据合集:建筑物、手机基站、POI、职住数据、用地类型
大数据·人工智能·智能手机·数据挖掘·数据分析
SelectDB4 小时前
Apache Doris 在菜鸟的大规模湖仓业务场景落地实践
大数据·数据分析·开源
tan77º6 小时前
【项目】分布式Json-RPC框架 - 项目介绍与前置知识准备
linux·网络·分布式·网络协议·tcp/ip·rpc·json
BYSJMG6 小时前
计算机大数据毕业设计推荐:基于Hadoop+Spark的食物口味差异分析可视化系统【源码+文档+调试】
大数据·hadoop·分布式·python·spark·django·课程设计