Spark_日期参数解析参数-spark.sql.legacy.timeParserPolicy

在Apache Spark中,spark.sql.legacy.timeParserPolicy是一个配置选项,它控制着时间和日期解析策略。此选项主要影响如何解析日期和时间字符串。

在Spark 3.0之前的版本中,日期和时间解析使用java.text.SimpleDateFormat,它在解析某些日期和时间格式时可能较为宽松。例如,它可能允许日期字符串中的月份部分超过12,或日期部分超过31,并尝试自动调整。这种宽松的解析方式在某些情况下可能会导致意外的结果。

从Spark 3.0开始,默认的解析策略变得更加严格,使用java.time.format.DateTimeFormatter来解析日期和时间格式。这种新的解析器严格遵守ISO标准,并且不会进行前面提到的自动调整。

spark.sql.legacy.timeParserPolicy 配置项可以设置为以下值:

  • LEGACY: 使用Spark 3.0之前的宽松解析策略。

  • CORRECTED: 使用Spark 3.0引入的新的严格解析策略。

  • EXCEPTION: 如果遇到无法解析的日期或时间字符串,则抛出异常。(不推荐,会导致作业中断)

例如,如果你想在Spark 3.0或更高版本中保持与以前版本相同的宽松解析行为,可以设置

复制代码
spark.conf.set("spark.sql.legacy.timeParserPolicy", "LEGACY")

或者在启动Spark时通过传递配置参数来设置:

复制代码
./bin/spark-submit --conf "spark.sql.legacy.timeParserPolicy=LEGACY" ...

如果你的代码中有日期和时间解析,并且你升级到了Spark 3.0或更高版本,那么你可能需要关注这个配置选项,以确保代码的兼容性和期望行为。如果你的日期和时间字符串格式严格并始终遵循ISO标准,或者你希望采用更严格的解析策略,那么你应该使用默认的CORRECTED策略。

相关推荐
Q264336502321 分钟前
【有源码】基于Hadoop生态的大数据共享单车数据分析与可视化平台-基于Python与大数据的共享单车多维度数据分析可视化系统
大数据·hadoop·python·机器学习·数据分析·spark·毕业设计
计算机毕业设计木哥41 分钟前
计算机毕设选题推荐:基于Hadoop和Python的游戏销售大数据可视化分析系统
大数据·开发语言·hadoop·python·信息可视化·spark·课程设计
Lansonli44 分钟前
大数据Spark(六十八):Transformation转换算子所有Join操作和union
大数据·分布式·spark
NewsMash1 小时前
贺Filcion五周岁:Chain Shop 10月17号正式上线
大数据
B站_计算机毕业设计之家2 小时前
Python+Flask+Prophet 汽车之家二手车系统 逻辑回归 二手车推荐系统 机器学习(逻辑回归+Echarts 源码+文档)✅
大数据·人工智能·python·机器学习·数据分析·汽车·大屏端
EkihzniY3 小时前
医疗发票 OCR 识别:打通医疗费用处理 “堵点” 的技术助手
大数据·人工智能·ocr
乐迪信息3 小时前
乐迪信息:智慧煤矿输送带安全如何保障?AI摄像机全天候识别
大数据·运维·人工智能·安全·自动化·视觉检测
阿里云大数据AI技术4 小时前
云栖实录|人工智能+大数据平台加速企业模型后训练
大数据·人工智能
B站_计算机毕业设计之家4 小时前
数据分析:Python懂车帝汽车数据分析可视化系统 爬虫(Django+Vue+销量分析 源码+文档)✅
大数据·爬虫·python·数据分析·汽车·可视化·懂车帝
京东零售技术5 小时前
Hudi系列:表类型(Table & Query Types)
大数据