OpenCV完结篇——计算机视觉(人脸识别 || 车牌识别)

文章目录


Haar人脸识别方法



scaleFactor调整哈尔级联器的人脸选框使其能框住人脸

官方教程指路

每个特征都是通过从黑色矩形下的像素总和减去白色矩形下的像素总和获得的单个值

级联器模型文件位置

python 复制代码
# -*- coding: utf-8 -*-
import cv2
import numpy as np

cv2.namedWindow('img', cv2.WINDOW_NORMAL)
#第一步,创建Haar级联器
facer = cv2.CascadeClassifier('./haarcascade_frontalface_default.xml')

#第二步,导入人脸识别的图片并将其灰度化
img = cv2.imread('E:/pic/Pic/11.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#第三步,进行人脸识别
#[[x,y,w,h]]
faces = facer.detectMultiScale(gray, 1.1, 5)

for (x, y, w, h) in faces:
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 3)

cv2.imshow('img', img)
if cv2.waitKey(0) & 0xff == 27:
    cv2.destroyAllWindows()

Haar识别眼鼻口

python 复制代码
# -*- coding: utf-8 -*-
import cv2
import numpy as np

cv2.namedWindow('img', cv2.WINDOW_NORMAL)
#第一步,创建Haar级联器
facer = cv2.CascadeClassifier('./haarcascade_frontalface_default.xml')
eye = cv2.CascadeClassifier('./haarcascade_eye.xml')
mouse = cv2.CascadeClassifier('./haarcascade_mcs_mouth.xml')

#第二步,导入人脸识别的图片并将其灰度化
img = cv2.imread('E:/pic/Pic/11.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#第三步,进行人脸识别
#[[x,y,w,h]]
faces = facer.detectMultiScale(gray, 1.1, 5)
eyes = eye.detectMultiScale(gray, 1.1, 5)
mouses = mouse.detectMultiScale(gray, 1.1, 5)

for (x, y, w, h) in faces:
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 3)

for (x, y, w, h) in eyes:
    cv2.rectangle(img, (x, y), (x + w, y + h), (255, 255, 0), 3)

# for (x, y, w, h) in mouses:
#     cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 255), 3)

cv2.imshow('img', img)
if cv2.waitKey(0) & 0xff == 27:
    cv2.destroyAllWindows()

识别嘴就会不精确了

python 复制代码
# -*- coding: utf-8 -*-
import cv2
import numpy as np

cv2.namedWindow('img', cv2.WINDOW_NORMAL)
#第一步,创建Haar级联器
facer = cv2.CascadeClassifier('./haarcascade_frontalface_default.xml')
eye = cv2.CascadeClassifier('./haarcascade_eye.xml')
mouse = cv2.CascadeClassifier('./haarcascade_mcs_mouth.xml')

#第二步,导入人脸识别的图片并将其灰度化
img = cv2.imread('E:/pic/Pic/11.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#第三步,进行人脸识别
#[[x,y,w,h]]
faces = facer.detectMultiScale(gray, 1.1, 5)
eyes = eye.detectMultiScale(gray, 1.1, 5)
mouses = mouse.detectMultiScale(gray, 1.1, 5)

for (x, y, w, h) in faces:
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 3)

for (x, y, w, h) in eyes:
    cv2.rectangle(img, (x, y), (x + w, y + h), (255, 255, 0), 3)

for (x, y, w, h) in mouses:
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 255), 3)

cv2.imshow('img', img)
if cv2.waitKey(0) & 0xff == 27:
    cv2.destroyAllWindows()

识别鼻子

python 复制代码
# -*- coding: utf-8 -*-
import cv2
import numpy as np

cv2.namedWindow('img', cv2.WINDOW_NORMAL)
#第一步,创建Haar级联器
facer = cv2.CascadeClassifier('./haarcascade_frontalface_default.xml')
eye = cv2.CascadeClassifier('./haarcascade_eye.xml')
mouse = cv2.CascadeClassifier('./haarcascade_mcs_mouth.xml')
nose = cv2.CascadeClassifier('./haarcascade_mcs_nose.xml')

#第二步,导入人脸识别的图片并将其灰度化
img = cv2.imread('E:/pic/Pic/11.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#第三步,进行人脸识别
#[[x,y,w,h]]
faces = facer.detectMultiScale(gray, 1.1, 5)
eyes = eye.detectMultiScale(gray, 1.1, 5)
mouses = mouse.detectMultiScale(gray, 1.1, 5)
noses = nose.detectMultiScale(gray, 1.1, 5)

for (x, y, w, h) in faces:
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 3)

for (x, y, w, h) in eyes:
    cv2.rectangle(img, (x, y), (x + w, y + h), (255, 255, 0), 3)

for (x, y, w, h) in mouses:
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 255), 3)

for (x, y, w, h) in noses:
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 3)

cv2.imshow('img', img)
if cv2.waitKey(0) & 0xff == 27:
    cv2.destroyAllWindows()

只要不测口,还是比较准确的

python 复制代码
# -*- coding: utf-8 -*-
import cv2
import numpy as np

cv2.namedWindow('img', cv2.WINDOW_NORMAL)
#第一步,创建Haar级联器
facer = cv2.CascadeClassifier('./haarcascade_frontalface_default.xml')
eye = cv2.CascadeClassifier('./haarcascade_eye.xml')
mouse = cv2.CascadeClassifier('./haarcascade_mcs_mouth.xml')
nose = cv2.CascadeClassifier('./haarcascade_mcs_nose.xml')

#第二步,导入人脸识别的图片并将其灰度化
img = cv2.imread('E:/pic/Pic/11.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#第三步,进行人脸识别
#[[x,y,w,h]]
faces = facer.detectMultiScale(gray, 1.1, 5)
# eyes = eye.detectMultiScale(gray, 1.1, 5)
# mouses = mouse.detectMultiScale(gray, 1.1, 5)
# noses = nose.detectMultiScale(gray, 1.1, 5)

i = 0

for (x, y, w, h) in faces:
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 3)
    roi_img = img[y: y+h, x:x+w]
    eyes = eye.detectMultiScale(roi_img, 1.1, 5)
    for (x, y, w, h) in eyes:
        cv2.rectangle(roi_img, (x, y), (x + w, y + h), (255, 255, 0), 3)
    noses = nose.detectMultiScale(roi_img, 1.1, 5)
    for (x, y, w, h) in noses:
        cv2.rectangle(roi_img, (x, y), (x + w, y + h), (0, 0, 255), 3)
    # mouses = mouse.detectMultiScale(roi_img, 1.1, 5)
    # for (x, y, w, h) in mouses:
    #     cv2.rectangle(roi_img, (x, y), (x + w, y + h), (0, 255, 255), 3)
    
    # i += 1
    # winname = 'face' + str(i)
    # cv2.imshow(winname, roi_img)

# for (x, y, w, h) in mouses:
#     cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 255), 3)

# for (x, y, w, h) in noses:
#     cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 3)

cv2.imshow('img', img)
if cv2.waitKey(0) & 0xff == 27:
    cv2.destroyAllWindows()

测口准确度太低!!!

python 复制代码
# -*- coding: utf-8 -*-
import cv2
import numpy as np

cv2.namedWindow('img', cv2.WINDOW_NORMAL)
#第一步,创建Haar级联器
facer = cv2.CascadeClassifier('./haarcascade_frontalface_default.xml')
eye = cv2.CascadeClassifier('./haarcascade_eye.xml')
mouse = cv2.CascadeClassifier('./haarcascade_mcs_mouth.xml')
nose = cv2.CascadeClassifier('./haarcascade_mcs_nose.xml')

#第二步,导入人脸识别的图片并将其灰度化
img = cv2.imread('E:/pic/Pic/11.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#第三步,进行人脸识别
#[[x,y,w,h]]
faces = facer.detectMultiScale(gray, 1.1, 5)
# eyes = eye.detectMultiScale(gray, 1.1, 5)
# mouses = mouse.detectMultiScale(gray, 1.1, 5)
# noses = nose.detectMultiScale(gray, 1.1, 5)

i = 0

for (x, y, w, h) in faces:
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 3)
    roi_img = img[y: y+h, x:x+w]
    eyes = eye.detectMultiScale(roi_img, 1.1, 5)
    for (x, y, w, h) in eyes:
        cv2.rectangle(roi_img, (x, y), (x + w, y + h), (255, 255, 0), 3)
    noses = nose.detectMultiScale(roi_img, 1.1, 5)
    for (x, y, w, h) in noses:
        cv2.rectangle(roi_img, (x, y), (x + w, y + h), (0, 0, 255), 3)
    mouses = mouse.detectMultiScale(roi_img, 1.1, 5)
    for (x, y, w, h) in mouses:
        cv2.rectangle(roi_img, (x, y), (x + w, y + h), (0, 255, 255), 3)
    
    # i += 1
    # winname = 'face' + str(i)
    # cv2.imshow(winname, roi_img)

# for (x, y, w, h) in mouses:
#     cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 255), 3)

# for (x, y, w, h) in noses:
#     cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 3)

cv2.imshow('img', img)
if cv2.waitKey(0) & 0xff == 27:
    cv2.destroyAllWindows()

Haar+Tesseract进行车牌识别




安装很简单,这里贴一个安装教程

配置出现问题的,可以看看这篇博客

测试一下,识别文字还是很准的!!!

python 复制代码
# -*- coding: utf-8 -*-
import cv2
import numpy as np

# cv2.namedWindow('img', cv2.WINDOW_NORMAL)
#第一步,创建Haar级联器
carplate = cv2.CascadeClassifier('./haarcascade_russian_plate_number.xml')

#第二步,导入带车牌的图片并将其灰度化
img = cv2.imread('./chinacar.jpeg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#第三步,进行车牌定位
#[[x,y,w,h]]
carplates = carplate.detectMultiScale(gray, 1.1, 5)

for (x, y, w, h) in carplates:
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 3)

cv2.imshow('img', img)
if cv2.waitKey(0) & 0xff == 27:
    cv2.destroyAllWindows()
python 复制代码
# -*- coding: utf-8 -*-
import cv2
import numpy as np

# cv2.namedWindow('img', cv2.WINDOW_NORMAL)
#第一步,创建Haar级联器
carplate = cv2.CascadeClassifier('./haarcascade_russian_plate_number.xml')

#第二步,导入带车牌的图片并将其灰度化
img = cv2.imread('./chinacar.jpeg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#第三步,进行车牌定位
#[[x,y,w,h]]
carplates = carplate.detectMultiScale(gray, 1.1, 5)

for (x, y, w, h) in carplates:
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 3)

# 对获取到的车牌进行预处理
# 1.提取ROI
roi = gray[y: y+h, x:x+w]
# 2.进行二值化
ret, roi_bin = cv2.threshold(roi, 10, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

cv2.imshow('img', img)
cv2.imshow('roi_bin', roi_bin)
if cv2.waitKey(0) & 0xff == 27:
    cv2.destroyAllWindows()



python 复制代码
# -*- coding: utf-8 -*-
import cv2
import numpy as np

# 引入tesseract库
import pytesseract

# cv2.namedWindow('img', cv2.WINDOW_NORMAL)
#第一步,创建Haar级联器
carplate = cv2.CascadeClassifier('./haarcascade_russian_plate_number.xml')

#第二步,导入带车牌的图片并将其灰度化
img = cv2.imread('./chinacar.jpeg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#第三步,进行车牌定位
#[[x,y,w,h]]
carplates = carplate.detectMultiScale(gray, 1.1, 5)

for (x, y, w, h) in carplates:
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 3)

# 对获取到的车牌进行预处理
# 1.提取ROI
roi = gray[y: y+h, x:x+w]
# 2.进行二值化
ret, roi_bin = cv2.threshold(roi, 10, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

pytesseract.pytesseract.tesseract_cmd = r'D:\Program Files\Tesseract_OCR\tesseract.exe'
print(pytesseract.image_to_string(roi, lang='chi_sim+eng', config='--psm 8 --oem 3'))

cv2.imshow('img', img)
cv2.imshow('roi_bin', roi_bin)
if cv2.waitKey(0) & 0xff == 27:
    cv2.destroyAllWindows()

具体实现还需要进一步优化!!!

深度学习基础知识

深度学习是计算机视觉最为重要的方法














dnn实现图像分类





python 复制代码
# -*- coding: utf-8 -*-
import cv2
from cv2 import dnn
import numpy as np

# 1.导入模型,创建神经网络
# 2.读取图片,转成张量
# 3.将张量输入到网络中,并进行预测
# 4.得到结果,显示

# 导入模型,创建神经网络
config = "./bvlc_googlenet.prototxt"
model = "./bvlc_googlenet.caffemodel"
net = dnn.readNetFromCaffe(config, model)

# 读取图片,转成张量
img = cv2.imread('./smallcat.jpeg')
blob = dnn.blobFromImage(img, 1.0, (224, 224), (104, 117, 123))

# 将张量输入到网络中,并进行预测
net.setInput(blob)
r = net.forward()

# 读取类目
classes = []
path = './synset_words.txt'
with open(path, 'rt') as f:
    classes = [x [x.find(" ") + 1:] for x in f]

order = sorted(r[0], reverse=True)
z = list(range(3))

for i in list(range(0, 3)):
    z[i] = np.where(r[0] == order[i])[0][0]
    print('No.', i + 1, ' matches:', classes[z[i]], end='')
    print('category row is at:', z[i] + 1, ' ', 'posibility:', order[i])


之后我会持续更新,如果喜欢我的文章,请记得一键三连哦,点赞关注收藏,你的每一个赞每一份关注每一次收藏都将是我前进路上的无限动力 !!!↖(▔▽▔)↗感谢支持!

相关推荐
郭wes代码4 分钟前
Cmd命令大全(万字详细版)
python·算法·小程序
scan72419 分钟前
LILAC采样算法
人工智能·算法·机器学习
leaf_leaves_leaf21 分钟前
win11用一条命令给anaconda环境安装GPU版本pytorch,并检查是否为GPU版本
人工智能·pytorch·python
夜雨飘零127 分钟前
基于Pytorch实现的说话人日志(说话人分离)
人工智能·pytorch·python·声纹识别·说话人分离·说话人日志
菌菌的快乐生活39 分钟前
理解支持向量机
算法·机器学习·支持向量机
爱喝热水的呀哈喽42 分钟前
《机器学习》支持向量机
人工智能·决策树·机器学习
大山同学44 分钟前
第三章线性判别函数(二)
线性代数·算法·机器学习
minstbe1 小时前
AI开发:使用支持向量机(SVM)进行文本情感分析训练 - Python
人工智能·python·支持向量机
月眠老师1 小时前
AI在生活各处的利与弊
人工智能
axxy20001 小时前
leetcode之hot100---240搜索二维矩阵II(C++)
数据结构·算法