python-opencv 人脸68点特征点检测

python-opencv 人脸68点特征点检测

不是很难,主要还是掉包,来看一下代码啊:

python 复制代码
# coding: utf-8
# 导包
import numpy as np
import dlib
import cv2


class face_emotion(object):
    def __init__(self):
        # 人脸检测器对象,通过它拿到人脸矩形框坐标
        self.detector = dlib.get_frontal_face_detector()

        # 加载预训练模型,创建 人脸关键点检测器 对象
        self.predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")

        # 创建 cv2 视频捕捉对象 or 摄像头对象
        # 将视频流从默认的摄像头(设备索引0)读取到内存中
        # 0 是设备索引号,可以替换为其他设备 1、2。。。
        # ls /dev/video* 查看设备号
        self.cap = cv2.VideoCapture(0)

    def feature_point_detection(self):
        # 循环读取视频帧 or 图像
        if True:
            # 读入 1 帧视频
            # flag:一个布尔值,指示是否成功读取到了视频帧
            # img:一个 numpy 数组,存储了图像的像素值,(0-255)
            # flag, img = self.cap.read()

            # 读入 1 张图像
            img = cv2.imread("image/beauty.png")

            # 取灰度
            # gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)

            # 使用人脸检测器检测人脸,返回 faces 矩形框坐标数据
            faces = self.detector(img, 0)
            print(faces)
            # exit()

            # 如果检测到人脸
            if faces:
                # 对每张人脸都标出 68 个特征点
                # for i in range(len(faces)):
                for k, d in enumerate(faces):
                    shape = self.predictor(img, d)
                    print(shape)
                    # 用圆圈标识每个特征点,(shape.part(i).x, shape.part(i).y) 每个特征点的坐标
                    for i in range(68):
                        index = str(i)
                       
                        cv2.putText(
                            img,
                            index,
                            (shape.part(i).x, shape.part(i).y),  # 左下角
                            cv2.FONT_HERSHEY_SIMPLEX,
                            0.4,  # 0.4:表示文本的缩放因子,可以调整文本的大小
                            (255, 0, 0)
                        )

            # 窗口显示
            cv2.imshow("img", img)
            

            # cv2.waitKey(1) 监听键盘输入,0xFF == 27 键盘 ESC 键值 27
            if cv2.waitKey(0) & 0xFF == 27:
                cv2.destroyAllWindows()

        # 释放摄像头
    #    self.cap.release()

        # 删除建立的窗口
        


if __name__ == "__main__":
    my_face = face_emotion()
    my_face.feature_point_detection()

运行结果如下:

相关推荐
却道天凉_好个秋7 分钟前
深度学习(二):神经元与神经网络
人工智能·神经网络·计算机视觉·神经元
UQI-LIUWJ8 分钟前
unsloth笔记:运行&微调 gemma
人工智能·笔记·深度学习
XiaoMu_0019 分钟前
基于Python+Streamlit的旅游数据分析与预测系统:从数据可视化到机器学习预测的完整实现
python·信息可视化·旅游
THMAIL11 分钟前
深度学习从入门到精通 - 生成对抗网络(GAN)实战:创造逼真图像的魔法艺术
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·cnn
却道天凉_好个秋13 分钟前
计算机视觉(八):开运算和闭运算
人工智能·计算机视觉·开运算与闭运算
无风听海14 分钟前
神经网络之深入理解偏置
人工智能·神经网络·机器学习·偏置
JoinApper15 分钟前
目标检测系列-Yolov5下载及运行
人工智能·yolo·目标检测
飞哥数智坊1 小时前
即梦4.0实测:我真想对PS说“拜拜”了!
人工智能
fantasy_arch1 小时前
9.3深度循环神经网络
人工智能·rnn·深度学习
Ai工具分享1 小时前
视频画质差怎么办?AI优化视频清晰度技术原理与实战应用
人工智能·音视频