OpenCV技术应用(6)— 暖色滤镜和冷色滤镜

**前言:****Hello大家好,我是小哥谈。**本节课就手把手教大家如何将一幅图像转化成暖色滤镜和冷色滤镜,希望大家学习之后能够有所收获~!🌈

目录

🚀1.技术介绍

🚀2.暖色滤镜

🚀3.冷色滤镜

🚀1.技术介绍

暖色滤镜又可以称作"暖色调"。需要注意的是,色调指的不是颜色,而是对一幅图像整体颜色的评价。通常可以从色相、明度、冷暖、纯度这4个方面来定义一幅图像的色调。例如,一幅图像有明确的色调:红调子是从色相来说的;稍暗的调子是从明度来说的;暖调子是从冷暖来说的;灰调子是从纯度来说的。

本案例的目的是让下图所示的图像实现暖色滤镜的效果。所谓暖色滤镜,就是让一幅图像的整体颜色偏红,进而达到暖色调的效果。

冷色滤镜又可以称作"冷色调"。其中,冷色调是按冷暖来说的。本实例的目的是让下图所示的图像实现冷色滤镜的效果。所谓冷色滤镜,就是让一幅图像的整体颜色偏蓝,进而达到冷色调的效果。


🚀2.暖色滤镜

一幅图像是由红色、绿色、蓝色这3个通道组成的,颜色通道一般有RGB和BGR两种,其中OpenCV采用的颜色通道是BGR。要想让一幅图像实现暖色滤镜的效果,即让一幅图像的整体颜色偏红,就要对这幅图像进行拆分通道处理。为了拆分图像中的通道,OpenCV提供了split()方法 。当使用split()方法按B→G→R的顺序拆分通道时,split()方法的语法格式如下所示:

python 复制代码
b, g, r = cv2.split(rgb_image)

参数说明:

b:B通道图像;

g:G通道图像;

r:R通道图像;

rgb_image:一幅RGB图像。

拆分图像中的通道后,调整R通道的值,即可实现暖色滤镜的效果。调整R通道的值的关键代码如下所示:

python 复制代码
r[:, :] = 255

为了在窗口显示这幅图像实现暖色滤镜的效果,就要对拆分且调整后的通道进行合并。因此,要借助OpenCV中用于合并通道的merge()方法。当使用merge()方法按B→G→R的顺序合并通道时,merge()方法的语法格式如下所示:

python 复制代码
bgr = cv2.merge([b, g, r])

参数说明:

bgr:按B→G→R的顺序合并通道后得到的图像;

b:B通道图像;

g:G通道图像;

r:R通道图像。

具体的实现代码如下所示:

python 复制代码
import cv2

img = cv2.imread(r"C:\Users\Lenovo\PycharmProjects\yolov5-master1\data\images\1.jpg") # 读取当前项目文件夹下的图像
cv2.imshow("rgb_image", img) # 窗口显示读取到的图像
b, g, r = cv2.split(img) # 拆分图像1.jpg的通道
r[:, :] = 255 # 将R通道的值调整为255
bgr_255 = cv2.merge([b, g, r]) # 按B→G→R的顺序合并通道
cv2.imshow("bgr_255", bgr_255) # 窗口显示R通道的值被调整为255的图像
cv2.waitKey() # 按下键盘上的任意按键后
cv2.destroyAllWindows() # 销毁显示图像的所有窗口

运行结果如下所示:


🚀3.冷色滤镜

要想让一幅图像实现冷色滤镜的效果,即让一幅图像的整体颜色偏蓝,就要对这幅图像进行拆分通道处理。为了拆分图像中的通道,OpenCV提供了split()方法。当使用split()方法按B→G→R的顺序拆分通道时,split()方法的语法格式如下所示:

python 复制代码
b, g, r = cv2.split(rgb_image)

参数说明:

b:B通道图像;

g:G通道图像;

r:R通道图像;

rgb_image:一幅RGB图像。

拆分图像中的通道后,调整B通道的值,即可实现冷色滤镜的效果。调整B通道的值的关键代码如下所示:

python 复制代码
b[:, :] = 255

为了在窗口显示这幅图像实现冷色滤镜的效果,就要对拆分且调整后的通道进行合并。因此,要借助OpenCV中用于合并通道的merge()方法。当使用merge()方法按B→G→R的顺序合并通道时,merge()方法的语法格式如下所示:

python 复制代码
bgr = cv2.merge([b, g, r])

参数说明:

bgr:按B→G→R的顺序合并通道后得到的图像;

b:B通道图像;

g:G通道图像;

r:R通道图像。

具体的实现代码如下所示:

python 复制代码
import cv2

img = cv2.imread(r"C:\Users\Lenovo\PycharmProjects\yolov5-master1\data\images\1.jpg") # 读取当前项目文件夹下的图像
cv2.imshow("rgb_image", img) # 窗口显示读取到的图像
b, g, r = cv2.split(img) # 拆分图像1.jpg的通道
b[:, :] = 255 # 将B通道的值调整为255
bgr_255 = cv2.merge([b, g, r]) # 按B→G→R的顺序合并通道
cv2.imshow("bgr_255", bgr_255) # 窗口显示B通道的值被调整为255的图像
cv2.waitKey() # 按下键盘上的任意按键后
cv2.destroyAllWindows() # 销毁显示图像的所有窗口

运行结果如下所示:


相关推荐
仗剑_走天涯9 分钟前
基于pytorch.nn模块实现线性模型
人工智能·pytorch·python·深度学习
cnbestec1 小时前
协作机器人UR7e与UR12e:轻量化设计与高负载能力助力“小而美”智造升级
人工智能·机器人·协作机器人·ur协作机器人·ur7e·ur12e
zskj_zhyl1 小时前
毫米波雷达守护银发安全:七彩喜跌倒检测仪重构居家养老防线
人工智能·安全·重构
gaosushexiangji2 小时前
利用sCMOS科学相机测量激光散射强度
大数据·人工智能·数码相机·计算机视觉
ai小鬼头3 小时前
AIStarter新版重磅来袭!永久订阅限时福利抢先看
人工智能·开源·github
说私域4 小时前
从品牌附庸到自我表达:定制开发开源AI智能名片S2B2C商城小程序赋能下的营销变革
人工智能·小程序
飞哥数智坊4 小时前
新版定价不够用,Cursor如何退回旧版定价
人工智能·cursor
12点一刻5 小时前
搭建自动化工作流:探寻解放双手的有效方案(2)
运维·人工智能·自动化·deepseek
未来之窗软件服务5 小时前
东方仙盟AI数据中间件使用教程:开启数据交互与自动化应用新时代——仙盟创梦IDE
运维·人工智能·自动化·仙盟创梦ide·东方仙盟·阿雪技术观
JNU freshman5 小时前
计算机视觉速成 之 概述
人工智能·计算机视觉