TinyMPC - CMU (卡耐基梅隆大学)开源的机器人 MPC 控制器

系列文章目录

CasADi - 最优控制开源 Python/MATLAB 库


文章目录

  • 系列文章目录
  • 前言
  • 一、机器人硬件对比
    • [1.1 Teensy 上的微控制器基准测试](#1.1 Teensy 上的微控制器基准测试)
    • [1.2 机器人硬件](#1.2 机器人硬件)
    • [1.3 BibTeX](#1.3 BibTeX)
  • 二、求解器
  • 三、功能(预期)
    • [3.1 高效](#3.1 高效)
    • [3.2 鲁棒](#3.2 鲁棒)
    • [3.3 可嵌入式](#3.3 可嵌入式)
    • [3.4 最小依赖性](#3.4 最小依赖性)
    • [3.5 高效热启动](#3.5 高效热启动)
    • [3.6 接口](#3.6 接口)
  • [四、在 Ubuntu 安装](#四、在 Ubuntu 安装)
    • [4.1 在终端克隆此 repo](#4.1 在终端克隆此 repo)
    • [4.2 导航至根目录并运行](#4.2 导航至根目录并运行)
    • [4.3 执行 CMake 配置步骤](#4.3 执行 CMake 配置步骤)
    • [4.4 构建 TinyMPC](#4.4 构建 TinyMPC)
  • 五、示例
    • [5.1 运行四旋翼飞行器悬停示例](#5.1 运行四旋翼飞行器悬停示例)
    • [5.2 运行 codegen 示例,然后在该目录下按照相同的构建步骤进行操作](#5.2 运行 codegen 示例,然后在该目录下按照相同的构建步骤进行操作)

前言

TinyMPC: 资源受限微控制器上的模型预测控制

作者:Anoushka Alavilli*, Khai Nguyen*, Sam Schoedel*, Brian Plancher, Zachary Manchester

Carnegie Mellon University, Barnard College


模型预测控制(Model-predictive control,MPC)是控制受复杂约束条件(complex constraints)影响的高动态机器人系统(highly dynamic robotic systems)的有力工具。然而,MPC 的计算要求很高,在资源有限的小型机器人平台上实施往往不切实际。我们推出的 TinyMPC 是一种高速 MPC 求解器,内存占用少,适用于小型机器人上常见的微控制器。我们的方法基于交替方向乘子法(ADMM),并利用 MPC 问题的结构来提高效率。我们以最先进的求解器 OSQP 为基准,对 TinyMPC 进行了演示,速度提高了近一个数量级,同时还在一个重达 27 克的四旋翼机器人上进行了硬件实验,演示了高速轨迹跟踪(high-speed trajectory tracking)和动态避障(dynamic obstacle avoidance)。

一、机器人硬件对比

1.1 Teensy 上的微控制器基准测试

1.2 机器人硬件

1.3 BibTeX

bash 复制代码
@misc{tinympc,
      title={TinyMPC: Model-Predictive Control on Resource-Constrained Microcontrollers}, 
      author={Anoushka Alavilli and Khai Nguyen and Sam Schoedel and Brian Plancher and Zachary Manchester},
      year={2023},
      eprint={2310.16985},
      archivePrefix={arXiv},
      primaryClass={cs.RO}
}

二、求解器

TinyMPC 求解器是一个数值优化软件包,用于求解默认形式的凸二次规划型模型预测控制(convex quadratic model-predictive control)
minimize: ⁡ 1 2 ( x N − x ˉ N ) T Q f ( x N − x ˉ N ) + ∑ k = 0 N ( 1 2 ( x k − x ˉ k ) T Q ( x k − x ˉ k ) + 1 2 ( u k − u ˉ k ) T R ( u k − u ˉ k ) ) subject  to: ⁡ x k + 1 = A x k + B u k u ‾   ≤   u k   ≤ u ‾ x ‾   ≤   x k   ≤ x ‾ \begin{array}{l l}{\operatorname*{minimize:}}&{\dfrac{1}{2}(x_{N}-\bar{x}{N})^{T}Q{f}(x_{N}-\bar{x}{N})+{{\sum{k=0}^{N}\bigl(\frac{1}{2}(x_{k}-\bar{x}{k})^{T}Q(x{k}-\bar{x}{k})+\frac{1}{2}\bigl(u{k}-\bar{u}{k}\bigr)^{T}R(u{k}-\bar{u}{k})\bigr)}}} \\ {\operatorname*{subject\;to:}}&x{k+1}=A x_{k}+B u_{k} \\ & \overline{{{u}}}\,\leq\,u_{k}\,\leq\underline{{u}} \\ & \overline{{{x}}}\,\leq\,x_{k}\,\leq\underline{{x}} \end{array} minimize:subjectto:21(xN−xˉN)TQf(xN−xˉN)+∑k=0N(21(xk−xˉk)TQ(xk−xˉk)+21(uk−uˉk)TR(uk−uˉk))xk+1=Axk+Buku≤uk≤ux≤xk≤x

其中, x k ∈ R n x_{k}\in\mathbb{R}^{n} xk∈Rn、 u k ∈ R m u_{k}\in\mathbb{R}^{m} uk∈Rm 分别为时间步长为 k 时的状态和控制输入,N 为时间步长(也称为视平线), A ∈ R n × n A\in\mathbb{R}^{n\times n} A∈Rn×n 和 B ∈ R n × m B\in\mathbb{R}^{n\times m} B∈Rn×m 定义了系统动力学, Q ≥ 0 Q\geq0 Q≥0、 R ≻ 0 R\succ0 R≻0 和 Q f ≥ 0 Q_{f}\geq0 Qf≥0 为对称成本权重矩阵, x ~ k {\tilde{x}}{k} x~k 和 u ˉ k {\bar{u}}{k} uˉk 是状态和输入参考轨迹。

三、功能(预期)

3.1 高效

它采用基于 ADMM 的定制一阶方法,无需矩阵因式分解。所有其他操作都非常简单。它还利用 MPC 问题中的结构,为基元更新实现了黎卡提递归(Riccati recursion)。

3.2 鲁棒

该算法完全 free,而且不需要对问题数据做任何假设(问题只需要是凸的)。它就是这么简单!

3.3 可嵌入式

它有一个简单的接口,无需内存管理器即可生成定制的可嵌入 C 代码。

3.4 最小依赖性

它只需要 Eigen 就能运行。

3.5 高效热启动

它可以轻松热启动,并且可以缓存矩阵因式分解,从而极其高效地解决参数化问题。

3.6 接口

它为 C、C++、Julia、Matlab 和 Python 提供了接口。

四、在 Ubuntu 安装

4.1 在终端克隆此 repo

bash 复制代码
git clone git@github.com:TinyMPC/TinyMPC.git

4.2 导航至根目录并运行

bash 复制代码
cd TinyMPC
mkdir build && cd build

4.3 执行 CMake 配置步骤

bash 复制代码
cmake ../

4.4 构建 TinyMPC

bash 复制代码
make 

五、示例

5.1 运行四旋翼飞行器悬停示例

bash 复制代码
./examples/example_quadrotor_hovering
bash 复制代码
tracking error at step  0: 2.2472
tracking error at step  1: 2.9549
tracking error at step  2: 2.5478
tracking error at step  3: 2.6331
tracking error at step  4: 3.1375
tracking error at step  5: 3.6413
tracking error at step  6: 4.0214
tracking error at step  7: 4.2898
tracking error at step  8: 4.5070
tracking error at step  9: 4.6282
tracking error at step 10: 4.3689
tracking error at step 11: 3.8895
tracking error at step 12: 3.3699
tracking error at step 13: 2.8681
tracking error at step 14: 2.3877
tracking error at step 15: 1.9336
tracking error at step 16: 1.5516
tracking error at step 17: 1.2588
tracking error at step 18: 1.0420
tracking error at step 19: 0.8844
tracking error at step 20: 0.7680
tracking error at step 21: 0.6773
tracking error at step 22: 0.6009
tracking error at step 23: 0.5316
tracking error at step 24: 0.4658
tracking error at step 25: 0.4024
tracking error at step 26: 0.3416
tracking error at step 27: 0.2839
tracking error at step 28: 0.2305
tracking error at step 29: 0.1822
tracking error at step 30: 0.1393
tracking error at step 31: 0.1023
tracking error at step 32: 0.0715
tracking error at step 33: 0.0472
tracking error at step 34: 0.0301
tracking error at step 35: 0.0217
tracking error at step 36: 0.0218
tracking error at step 37: 0.0251
tracking error at step 38: 0.0279
tracking error at step 39: 0.0291
tracking error at step 40: 0.0290
tracking error at step 41: 0.0277
tracking error at step 42: 0.0254
tracking error at step 43: 0.0227
tracking error at step 44: 0.0197
tracking error at step 45: 0.0167
tracking error at step 46: 0.0140
tracking error at step 47: 0.0116
tracking error at step 48: 0.0097
tracking error at step 49: 0.0082
tracking error at step 50: 0.0072
tracking error at step 51: 0.0067
tracking error at step 52: 0.0065
tracking error at step 53: 0.0065
tracking error at step 54: 0.0065
tracking error at step 55: 0.0064
tracking error at step 56: 0.0063
tracking error at step 57: 0.0062
tracking error at step 58: 0.0061
tracking error at step 59: 0.0059
tracking error at step 60: 0.0058
tracking error at step 61: 0.0056
tracking error at step 62: 0.0055
tracking error at step 63: 0.0054
tracking error at step 64: 0.0053
tracking error at step 65: 0.0052
tracking error at step 66: 0.0052
tracking error at step 67: 0.0052
tracking error at step 68: 0.0052
tracking error at step 69: 0.0052

5.2 运行 codegen 示例,然后在该目录下按照相同的构建步骤进行操作

bash 复制代码
./examples/example_codegen
bash 复制代码
A = [1, 1]
[5, 2]
B = [3, 4]
[3, 1]
Q = [1.1,   0]
[  0, 1.1]
R = [2.1,   0]
[  0, 2.1]
rho = 0.1
Kinf converged after 5 iterations
Precomputing finished
Kinf = [   1.36,  0.5335]
[-0.6323, -0.1066]
Pinf = [8.899, 2.664]
[2.664, 2.046]
Quu_inv = [  0.1076, -0.09799]
[-0.09799,  0.09522]
AmBKt = [-0.5502,   1.553]
[-0.1739,  0.5062]
coeff_d2p = [7.438e-06, 8.381e-06]
[2.127e-06, 2.398e-06]
Creating generated code directory at /home/khai/SSD/Code/TinyMPC/generated_code
ERROR OPENING DATA WORKSPACE FILE
Segmentation fault
相关推荐
hairenjing11233 小时前
使用 Mac 数据恢复从 iPhoto 图库中恢复照片
windows·stm32·嵌入式硬件·macos·word
模拟IC攻城狮5 小时前
华为海思招聘-芯片与器件设计工程师-模拟芯片方向- 机试题-真题套题题目——共8套(每套四十题)
嵌入式硬件·华为·硬件架构·芯片
IT B业生5 小时前
51单片机教程(六)- LED流水灯
单片机·嵌入式硬件·51单片机
一枝小雨5 小时前
51单片机学习心得2(基于STC89C52):串口通信(UART)
单片机·嵌入式硬件·51单片机
IT B业生6 小时前
51单片机教程(一)- 开发环境搭建
单片机·嵌入式硬件·51单片机
袁牛逼8 小时前
电话语音机器人,是由哪些功能构成?
人工智能·自然语言处理·机器人·语音识别
好想有猫猫8 小时前
【51单片机】串口通信原理 + 使用
c语言·单片机·嵌入式硬件·51单片机·1024程序员节
云卓科技8 小时前
无人车之路径规划篇
人工智能·嵌入式硬件·算法·自动驾驶
TsingtaoAI9 小时前
2024.10|AI/大模型在机器人/自动驾驶/智能驾舱领域的最新应用和深度洞察
机器人·自动驾驶·ai大模型·具身智能·智能驾舱
stm 学习ing9 小时前
C语言 循环高级
c语言·开发语言·单片机·嵌入式硬件·算法·嵌入式实时数据库