李宏毅gpt个人记录

参考:

李宏毅机器学习--self-supervised:BERT、GPT、Auto-encoder-CSDN博客

用无标注资料的任务训练完模型以后,它本身没有什么用,GPT 1只能够把一句话补完 ,可以把 Self-Supervised Learning 的 Model做微微的调整,把它用在其他下游的任务裡面,对于下游任务的训练,仍然需要少量的标记数据

GPT1基本实现

例如有条训练语句是"台湾大学",那么输入BOS后训练输出是台,再将BOS和"台"作为输入训练输出是湾,给它BOS "台"和"湾",然后它应该要预测"大",以此类推。模型输出embedding h,h再经过linear classification和softmax后,计算输出分布与正确答案之间的损失cross entropy,希望它越小越好。

详细计算过程:

GPT1和GPT2

GPT1里主要用的是transformer中的decoder层。

GPT-2依然沿用GPT单向transformer的模式,只不过做了一些改进与改变:

  1. GPT-2去掉了fine-tuning层
  2. 增加数据集和参数
  3. 调整transformer

|-------|-------|
| 模型 | 参数量 |
| ELMO | 94M |
| BERT | 340M |
| GPT-2 | 1542M |

相关推荐
飞哥数智坊5 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三6 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯6 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能
Dm_dotnet9 小时前
公益站Agent Router注册送200刀额度竟然是真的
人工智能
算家计算9 小时前
7B参数拿下30个世界第一!Hunyuan-MT-7B本地部署教程:腾讯混元开源业界首个翻译集成模型
人工智能·开源
机器之心9 小时前
LLM开源2.0大洗牌:60个出局,39个上桌,AI Coding疯魔,TensorFlow已死
人工智能·openai
Juchecar10 小时前
交叉熵:深度学习中最常用的损失函数
人工智能
林木森ai10 小时前
爆款AI动物运动会视频,用Coze(扣子)一键搞定全流程(附保姆级拆解)
人工智能·aigc
聚客AI11 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
BeerBear12 小时前
【保姆级教程-从0开始开发MCP服务器】一、MCP学习压根没有你想象得那么难!.md
人工智能·mcp