计算机方向的一些重要缩写和简介

参考:
深度学习四大类网络模型
干货|机器学习超全综述!
机器学习ML、卷积神经网络CNN、循环神经网络RNN、马尔可夫蒙特卡罗MCMC、生成对抗网络GAN、图神经网络GNN------人工智能经典算法

  • MLP(Multi Layer Perseption)用在神经网络中
  • CNN(Convolutional Neural Networks):卷积神经网络
    主要用于CV
  • U-Net
    用于语义分割
  • RNN(Recurrent Neural Network):循环神经网络(或者说递归神经网络)

  • DNN(Deep Neural Networks):深度神经网络

  • GNN(Graph Neural Networks):图神经网络

  • BRNN(Recurrent Neural Network):双向长短时记忆循环神经网络

  • GAN(Generative Adversarial Networks):生成式对抗网络

  • SORT(Simple Online and Realtime Tracking):简单的在线和实时跟踪

  • NLP(Natural Language Processing):自然语言处理

  • MTL(Multi-Task-Learning):多任务学习

  • LSTM(Long Short-Term Memory):长短期记忆网络

  • CV(Computer Vision):计算机视觉

  • Transformer

    主要用在NLP中,现在在CV领域,也在快速发展,目前最火的肯定是GPT,主要用来做内容生成。

  • GPT

    GPT:Generative Pre-trained Transformer:生成式预训练Transformer。主要用在文本生成,图像生成,机器聊天,机器问答等领域。

机器学习ML主要体现在几个部分:

数据挖掘:来发现数据之间的关系

CV:这个很火

NLP:自然语言处理,这个和大语言模型差不多

语音识别:让机器听懂机器

决策:让机器做决定。(无人驾驶中的汽车控制决策)

我很喜欢这个图来表示机器学习:

模型建立是属于比较有趣的部分,根据目标变量(通常称为Y变量)的数据类型(定性或定量),建立一个分类(如果Y是定性的)或回归(如果Y是定量的)模型。

机器学习算法可以大致分为以下三种类型之一:

监督学习:是一种机器学习任务,建立输入X和输出Y变量之间的数学(映射)关系。这样的X、Y对构成了用于建立模型的标签数据,以便学习如何从输入中预测输出。

无监督学习:是一种只利用输入X变量的机器学习任务。这种 X 变量是未标记的数据,学习算法在建模时使用的是数据的固有结构。

强化学习:是一种决定下一步行动方案的机器学习任务,它通过试错学习来实现这一目标,努力使回报最大化。

相关推荐
Blossom.1181 分钟前
机器学习在智能建筑中的应用:能源管理与环境优化
人工智能·python·深度学习·神经网络·机器学习·机器人·sklearn
m0_678693331 小时前
深度学习笔记29-RNN实现阿尔茨海默病诊断(Pytorch)
笔记·rnn·深度学习
胡耀超2 小时前
标签体系设计与管理:从理论基础到智能化实践的综合指南
人工智能·python·深度学习·数据挖掘·大模型·用户画像·语义分析
fzyz1233 小时前
Windows系统下WSL从C盘迁移方案
人工智能·windows·深度学习·wsl
FF-Studio5 小时前
【硬核数学 · LLM篇】3.1 Transformer之心:自注意力机制的线性代数解构《从零构建机器学习、深度学习到LLM的数学认知》
人工智能·pytorch·深度学习·线性代数·机器学习·数学建模·transformer
云渚钓月梦未杳6 小时前
深度学习03 人工神经网络ANN
人工智能·深度学习
贾全6 小时前
第十章:HIL-SERL 真实机器人训练实战
人工智能·深度学习·算法·机器学习·机器人
我是小哪吒2.07 小时前
书籍推荐-《对抗机器学习:攻击面、防御机制与人工智能中的学习理论》
人工智能·深度学习·学习·机器学习·ai·语言模型·大模型
慕婉03077 小时前
深度学习前置知识全面解析:从机器学习到深度学习的进阶之路
人工智能·深度学习·机器学习
埃菲尔铁塔_CV算法9 小时前
基于 TOF 图像高频信息恢复 RGB 图像的原理、应用与实现
人工智能·深度学习·数码相机·算法·目标检测·计算机视觉