机器学习实验六:聚类

系列文章目录

  1. 机器学习实验一:线性回归
  2. 机器学习实验二:决策树模型
  3. 机器学习实验三:支持向量机模型
  4. 机器学习实验四:贝叶斯分类器
  5. 机器学习实验五:集成学习
  6. 机器学习实验六:聚类

文章目录


一、实验目的

(1)掌握聚类的基本思想;

(2)掌握 K-means 算法,编程实现 K-means;

(3)掌握使用 K-Means 算法对鸢尾花三分类数据集进行聚类操作。

二、实验原理

1.聚类思想

聚类(Clustering)是一种典型的"无监督学习",是把物理对象或抽象对

象的集合分组为由彼此类似的对象组成的多个类的分析过程。

聚类试图将数据集中的样本划分为若干个通常是不相交的子集,每个子集对

应一个簇。与分类的不同在于,聚类所要求的划分的类别是未知,类别个数也是

未知的。聚类的目标为簇内相似度尽可能高,簇间相似度尽可能低。

2.K 均值聚类算法 K-Means

K-means 是一种常用的基于欧式距离的聚类算法,其认为两个目标的距离越

近,相似度越大。其算法流程如下:

三、实验内容

使用 Python 读取鸢尾花三分类数据集并训练最佳的 K-Means 模型,随后使

用生成的模型将数据进行聚类,并根据使用聚类纯度、兰德系数和 F1 值评测聚

类效果。

由于本次为聚类任务,因此使用聚类相关的混淆矩阵和评价指标。

聚类任务中的混淆矩阵与普通混淆矩阵的意义有一定区别,如下表所示:

其中,TP 为两个同类样本在同一簇的数量;FP 为两个非同类样本在同一簇

的数量;TN 为两个非同类样本分别在两个簇的数量;FN 为两个同类样本分别在

两个簇的数量。

评价指标选择为聚类纯度 Purity、兰德系数 Rand Index(RI)、F1 度量值,

计算公式如下:

代码实现时,可以直接调用 sklearn 库中的 pair_confusion_matrix()获得

混淆矩阵,随后利用公式进行计算。

四、实验步骤

1.训练 K-Means 模型

根据数据,我们已知鸢尾花分3类,因此我们这里的聚类数k=3。利用sklearn

的 KMeans()方法训练 K-Means 模型,并将结果用散点图表示,实现代码如下:

python 复制代码
#训练 KMeans 模型
estimator = KMeans(n_clusters=3)
estimator.fit(X) #聚类
#绘制结果散点图
x0 = X[label_pred == 0]
x1 = X[label_pred == 1]
x2 = X[label_pred == 2]
plt.scatter(x0[:, 0], x0[:, 1], c = "red", marker='o', label='label0') 
plt.scatter(x1[:, 0], x1[:, 1], c = "green", marker='*', label='label1') 
plt.scatter(x2[:, 0], x2[:, 1], c = "blue", marker='+', label='label2') 
plt.xlabel('petal length') 
plt.ylabel('petal width') 
plt.legend(loc=2) 
plt.show() 

2. 计算聚类纯度、兰德系数和 F1 值,评测聚类效果

使用 sklearn.metrics 库中提供的 pair_confusion_matrix()方法求得当前

聚类的混淆矩阵,随后利用聚类纯度、兰德系数和 F1 值的计算公式计算得到当

前聚类效果的相应指标值。

以下为该部分代码:

python 复制代码
#聚类纯度
def accuracy(labels_true, labels_pred):
 clusters = np.unique(labels_pred)
 labels_true = np.reshape(labels_true, (-1, 1))
 labels_pred = np.reshape(labels_pred, (-1, 1))
 count = []
 for c in clusters:
 idx = np.where(labels_pred == c)[0]
 labels_tmp = labels_true[idx, :].reshape(-1)
 count.append(np.bincount(labels_tmp).max())
 return np.sum(count) / labels_true.shape[0]
#兰德系数、F1 值
def get_rand_index_and_f_measure(labels_true, labels_pred, beta=1.):
 (tn, fp), (fn, tp) = pair_confusion_matrix(labels_true, labels_pred)
 ri = (tp + tn) / (tp + tn + fp + fn)
 p, r = tp / (tp + fp), tp / (tp + fn)
 f_beta = 2*p*r/(p+r)
 return ri, f_beta
#输出结果
purity = accuracy(y, y_pred)
ri, f_beta = get_rand_index_and_f_measure(y, y_pred, beta=1.)
print(f"聚类纯度:{purity}\n 兰德系数:{ri}\nF1 值:{f_beta}")

总结

以上就是今天要讲的内容,机器学习实验六:聚类

相关推荐
Robot25128 分钟前
「华为」人形机器人赛道投资首秀!
大数据·人工智能·科技·microsoft·华为·机器人
J先生x32 分钟前
【IP101】图像处理进阶:从直方图均衡化到伽马变换,全面掌握图像增强技术
图像处理·人工智能·学习·算法·计算机视觉
Narutolxy3 小时前
大模型数据分析破局之路20250512
人工智能·chatgpt·数据分析
浊酒南街3 小时前
TensorFlow中数据集的创建
人工智能·tensorflow
2301_787552874 小时前
console-chat-gpt开源程序是用于 AI Chat API 的 Python CLI
人工智能·python·gpt·开源·自动化
layneyao5 小时前
AI与自然语言处理(NLP):从BERT到GPT的演进
人工智能·自然语言处理·bert
jndingxin6 小时前
OpenCV 的 CUDA 模块中用于将多个单通道的 GpuMat 图像合并成一个多通道的图像 函数cv::cuda::merge
人工智能·opencv·计算机视觉
格林威6 小时前
Baumer工业相机堡盟工业相机的工业视觉中为什么偏爱“黑白相机”
开发语言·c++·人工智能·数码相机·计算机视觉
IT古董6 小时前
【漫话机器学习系列】249.Word2Vec自然语言训练模型
机器学习·自然语言处理·word2vec
灬0灬灬0灬6 小时前
深度学习---常用优化器
人工智能·深度学习