【数据结构(六)】排序算法介绍和算法的复杂度计算(1)

文章目录

  • [1. 排序算法的介绍](#1. 排序算法的介绍)
    • [1.1. 排序的分类](#1.1. 排序的分类)
  • [2. 算法的时间复杂度](#2. 算法的时间复杂度)
    • [2.1. 度量一个程序(算法)执行时间的两种方法](#2.1. 度量一个程序(算法)执行时间的两种方法)
    • [2.2. 时间频度](#2.2. 时间频度)
      • [2.2.1. 忽略常数项](#2.2.1. 忽略常数项)
      • [2.2.2. 忽略低次项](#2.2.2. 忽略低次项)
      • [2.2.2. 忽略系数](#2.2.2. 忽略系数)
    • [2.3. 时间复杂度](#2.3. 时间复杂度)
    • [2.4. 常见的时间复杂度](#2.4. 常见的时间复杂度)
    • [2.5. 平均时间复杂度和最坏时间复杂度](#2.5. 平均时间复杂度和最坏时间复杂度)
  • [3. 算法的空间复杂度](#3. 算法的空间复杂度)

1. 排序算法的介绍

排序也称排序算法(Sort Algorithm),排序是将一组数据,依指定的顺序进行排列的过程。

1.1. 排序的分类

  1. 内部排序:
    指将需要处理的所有数据都加载到**内部存储器(内存)**中进行排序。
  2. 外部排序法:
    数据量过大,无法全部加载到内存中,需要借助**外部存储(文件等)**进行排序。

常见的排序算法分类(见下图):

2. 算法的时间复杂度

2.1. 度量一个程序(算法)执行时间的两种方法

  1. 事后统计的方法

    这种方法可行, 但是有两个问题:

    一是要想对设计的算法的运行性能进行评测,需要实际运行该程序;

    二是所得时间的统计量依赖于计算机的硬件、软件等环境因素, 这种方式,要在同一台计算机的相同状态下运行,才能比较那个算法速度更快。

  2. 事前估算的方法

    通过分析某个算法的时间复杂度来判断哪个算法更优。

2.2. 时间频度

基本介绍:

时间频度:一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为 T ( n ) T(n) T(n)。

举例说明-基本案例

比如计算 1-100 所有数字之和, 可设计两种算法:

2.2.1. 忽略常数项

结论:

① 2 n + 20 2n+20 2n+20 和 2 n 2n 2n 随着 n n n 变大,执行曲线无限接近, 20 20 20 可以忽略

② 3 n + 10 3n+10 3n+10 和 3 n 3n 3n 随着 n n n 变大,执行曲线无限接近, 10 10 10 可以忽略

2.2.2. 忽略低次项

结论:

① 2 n 2 + 3 n + 10 2n^2+3n+10 2n2+3n+10 和 2 n 2 2n^2 2n2 ,随着 n n n 变大, 执行曲线无限接近, 可以忽略 3 n + 10 3n+10 3n+10

② n 2 + 5 n + 20 n^2+5n+20 n2+5n+20 和 n 2 n^2 n2 ,随着 n n n 变大,执行曲线无限接近, 可以忽略 5 n + 20 5n+20 5n+20

2.2.2. 忽略系数

结论:

① 随着 n n n 值变大, 5 n 2 + 7 n 5n^2+7n 5n2+7n 和 3 n 2 + 2 n 3n^2 + 2n 3n2+2n ,执行曲线重合, 说明 这种情况下, 5 5 5 和 3 3 3 可以忽略。

② 而 n 3 + 5 n n^3+5n n3+5n 和 6 n 3 + 4 n 6n^3+4n 6n3+4n ,执行曲线分离,说明多少次方是关键

2.3. 时间复杂度

一般情况下,算法中的基本操作语句的重复执行次数 是问题规模 n n n 的某个函数,用 T ( n ) T(n) T(n)表示,若有某个辅助函数 f ( n ) f(n) f(n),使得当 n n n 趋近于无穷大时, T ( n ) f ( n ) \frac {T(n)}{f(n)} f(n)T(n) 的极限值为不等于零的常数 ,则称 f ( n ) f(n) f(n)是 T ( n ) T(n) T(n)的同数量级函数。记作 T ( n ) = O ( f ( n ) ) \pmb{T(n)=O( f(n) )} T(n)=O(f(n)),称 O ( f ( n ) ) O( f(n) ) O(f(n)) 为算法的渐进时间复杂度,简称时间复杂度

T ( n ) T(n) T(n) 不同,但时间复杂度可能相同。 如: T ( n ) = n 2 + 7 n + 6 T(n)=n^2+7n+6 T(n)=n2+7n+6 与 T ( n ) = 3 n 2 + 2 n + 2 T(n)=3n^2+2n+2 T(n)=3n2+2n+2 它们的 T ( n ) T(n) T(n) 不同,但时间复杂度相同,都为 O ( n 2 ) \pmb{O(n²)} O(n2)。

计算时间复杂度的方法:

(以 T ( n ) = n 2 + 7 n + 6 T(n)=n^2+7n+6 T(n)=n2+7n+6 为例)

①用常数 1 1 1 代替运行时间中的所有加法常数。

T ( n ) = n 2 + 7 n + 6 T(n)=n^2+7n+6 T(n)=n2+7n+6 --> T ( n ) = n 2 + 7 n + 1 T(n)=n^2+7n+1 T(n)=n2+7n+1

②修改后的运行次数函数中,只保留最高阶项。

T ( n ) = n 2 + 7 n + 1 T(n)=n^2+7n+1 T(n)=n2+7n+1 --> T ( n ) = n 2 T(n) = n^2 T(n)=n2

③去除最高阶项的系数。

T ( n ) = n 2 T(n) = n^2 T(n)=n2 --> T ( n ) = n 2 T(n) = n^2 T(n)=n2 --> O ( n 2 ) O(n^2) O(n2)

2.4. 常见的时间复杂度

  1. 常数阶 O ( 1 ) O(1) O(1)
  2. 对数阶 O ( l o g 2 n ) O(log_2n) O(log2n)(其中, l o g log log以2为底,也可以是以3、4、5......为底)
  3. 线性阶 O ( n ) O(n) O(n)
  4. 线性对数阶 O ( n l o g 2 n ) O(nlog_2n) O(nlog2n)(其中, l o g log log以2为底,也可以是以3、4、5......为底)
  5. 平方阶 O ( n 2 ) O(n^2) O(n2)
  6. 立方阶 O ( n 3 ) O(n^3) O(n3)
  7. k 次方阶 O ( n k ) O(n^k) O(nk)
  8. 指数阶 O ( 2 n ) O(2^n) O(2n)

常见的时间复杂度对应的图:

说明:

  1. 常见的算法时间复杂度由小到大依次为: O ( 1 ) Ο(1) O(1)< O ( l o g 2 n ) Ο(log_2n) O(log2n)< O ( n ) Ο(n) O(n)< O ( n l o g 2 n Ο(nlog_2n O(nlog2n)< O ( n 2 ) Ο(n^2) O(n2)< O ( n 3 ) Ο(n^3) O(n3)< O ( n k ) Ο(n^k) O(nk) < O ( 2 n ) Ο(2^n) O(2n) ,随着问题规模 n 的不断增大,上述时间复杂度不断增大,算法的执行效率越低。
  2. 从图中可见,我们应该尽可能避免使用指数阶的算法。

① 常数阶 O ( 1 ) O(1) O(1)

无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是 O ( 1 ) O(1) O(1)

java 复制代码
int i = 1;
int j =2;
++i;
j++;
int m = i + j;

上述代码在执行的时候,它消耗的时候并不随着某个变量的增长而增长,那么无论这类代码有多长,即使有几万几十万行,都可以用O(1)来表示它的时间复杂度。


② 对数阶 O ( l o g 2 n ) O(log_2n) O(log2n)

java 复制代码
int i =1;
while(i < n){
	i= i * 2;
}

说明:

在while循环里面,每次都将 i i i 乘以 2 2 2,乘完之后, i i i 距离 n n n 就越来越近了。假设循环 x x x 次之后, i i i 就大于 n n n 了,此时这个循环就退出了,也就是说 2 2 2 的 x x x 次方等于 n n n,那么 x = l o g 2 n x=log_2n x=log2n也就是说当循环 l o g 2 n log_2n log2n 次以后,这个代码就结束了。因此这个代码的时间复杂度为: O ( l o g 2 n ) O(log_2n) O(log2n) 。

O ( l o g 2 n ) O(log_2n) O(log2n) 中的2是根据代码变化的,若 i = i ∗ 3 i = i * 3 i=i∗3 ,则是 O ( l o g 3 n ) O(log_3n) O(log3n)。

如果 N = a x ( a > 0 , a ≠ 1 ) N= a^x(a > 0,a ≠1) N=ax(a>0,a=1),即 a a a 的 x x x 次方等于 N ( a > 0 , a ≠ 1 ) N(a>0,a≠1) N(a>0,a=1),那么数 x x x 叫做以 a a a 为底 N N N 的对数 ( l o g a r i t h m ) (logarithm) (logarithm),记作 x = l o g a N x = log_aN x=logaN 。其中, a a a 叫做对数的底数 , N N N 叫做真数 , x x x 叫做 "以 a a a 为底 N N N 的对数" 。


③ 线性阶 O ( n ) O(n) O(n)

java 复制代码
for(i = 1; i <= n; ++i){
	j = i;
	j++;
}

说明:

这段代码,for循环 里面的代码会执行 n n n 遍,因此它消耗的时间是随着 n n n 的变化而变化的,因此这类代码都可以用 O ( n ) O(n) O(n) 来表示它的时间复杂度。 T ( n ) = n + 1 T(n)=n+1 T(n)=n+1 --> O ( n ) O(n) O(n)


④ 线性对数阶 O ( n l o g 2 n ) O(nlog_2n) O(nlog2n)

java 复制代码
for(m = 1; m < n; m++){
	i = 1;
	while(i < n){
		i = i * 2;
	}
}

说明:

线性对数阶 O ( n l o g 2 N ) O(nlog_2N) O(nlog2N) 其实非常容易理解,将时间复杂度为 O ( l o g 2 n ) O(log_2n) O(log2n) 的代码循环 N N N 遍的话,那么它的时间复杂度就是 n ∗ O ( l o g 2 N ) n * O(log_2N) n∗O(log2N),也就是了 O ( n l o g 2 N ) O(nlog_2N) O(nlog2N)


⑤ 平方阶 O ( n 2 ) O(n^2) O(n2)

java 复制代码
for(x = 1; x <= n; x++){
	for(i = 1; i <= n; i++){
		j = i;
		j++;
	}
}

说明:

平方阶 O ( n 2 ) O(n²) O(n2) 就更容易理解了,如果把 O ( n ) O(n) O(n) 的代码再嵌套循环一遍,它的时间复杂度就是 O ( n 2 ) O(n²) O(n2),这段代码其实就是嵌套了2层 n n n 循环,它的时间复杂度就是 O ( n ∗ n ) O(n*n) O(n∗n),即 O ( n 2 ) O(n²) O(n2) 如果将其中一层循环的 n n n 改成 m m m ,那它的时间复杂度就变成了 O ( m ∗ n ) O(m*n) O(m∗n)


⑥ 立方阶 O ( n 3 ) O(n^3) O(n3) ⑦ k 次方阶 O ( n k ) O(n^k) O(nk)

说明: 参考上面的 O ( n 2 ) O(n²) O(n2) 去理解就好了, O ( n 3 ) O(n³) O(n3) 相当于3层 n n n 循环,其它的类似。

2.5. 平均时间复杂度和最坏时间复杂度

平均时间复杂度 是指所有可能的输入实例均以等概率出现的情况下,该算法的运行时间。

最坏情况下的时间复杂度称最坏时间复杂度一般讨论的时间复杂度均是最坏情况下的时间复杂度。这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会比最坏情况更长。

平均时间复杂度和最坏时间复杂度是否一致,和算法有关(如下图所示)。

排序法 平均时间 最差情况 稳定度 额外空间 备注
冒泡 O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2) 稳定 O ( 1 ) O(1) O(1) n n n小的情况较好
交换 O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2) 不稳定 O ( 1 ) O(1) O(1) n n n小的情况较好
选择 O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2) 不稳定 O ( 1 ) O(1) O(1) n n n小的情况较好
插入 O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2) 稳定 O ( 1 ) O(1) O(1) 大部分已排序时较好
基数 O ( l o g R B ) O(log_RB) O(logRB) O ( l o g R B ) O(log_RB) O(logRB) 稳定 O ( n ) O(n) O(n) B是真数(0~9) R是基数(个十百)
Shell O ( n l o g n ) O(nlogn) O(nlogn) O ( n s ) , 1 < s < 2 O(n^s) ,1<s<2 O(ns),1<s<2 不稳定 O ( 1 ) O(1) O(1) s是所选分组
快速 O ( n l o g n ) O(nlogn) O(nlogn) O ( n 2 ) O(n^2) O(n2) 不稳定 O ( n l o g n ) O(nlogn) O(nlogn) n n n大的情况较好
归并 O ( n l o g n ) O(nlogn) O(nlogn) O ( n l o g n ) O(nlogn) O(nlogn) 稳定 O ( n ) O(n) O(n) n n n大的情况较好
O ( n l o g n ) O(nlogn) O(nlogn) O ( n l o g n ) O(nlogn) O(nlogn) 不稳定 O ( 1 ) O(1) O(1) n n n大的情况较好

3. 算法的空间复杂度

类似于时间复杂度的讨论,一个算法的空间复杂度 (Space Complexity)定义为该算法所耗费的存储空间 ,它也是问题规模 n n n 的函数。

空间复杂度 是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模 n n n 有关,它随着 n n n 的增大而增大,当 n n n 较大时,将占用较多的存储单元,例如快速排序、归并排序、 基数排序就属于这种情况。

在做算法分析时,主要讨论的是时间复杂度 。从用户使用体验上看,更看重的程序执行的速度。一些缓存产品(redis, memcache)和算法(基数排序)本质就是用空间换时间

相关推荐
小沈熬夜秃头中୧⍤⃝11 分钟前
【贪心算法】No.1---贪心算法(1)
算法·贪心算法
木向43 分钟前
leetcode92:反转链表||
数据结构·c++·算法·leetcode·链表
阿阿越1 小时前
算法每日练 -- 双指针篇(持续更新中)
数据结构·c++·算法
skaiuijing1 小时前
Sparrow系列拓展篇:对调度层进行抽象并引入IPC机制信号量
c语言·算法·操作系统·调度算法·操作系统内核
Star Patrick1 小时前
算法训练(leetcode)二刷第十九天 | *39. 组合总和、*40. 组合总和 II、*131. 分割回文串
python·算法·leetcode
武子康2 小时前
大数据-214 数据挖掘 机器学习理论 - KMeans Python 实现 算法验证 sklearn n_clusters labels
大数据·人工智能·python·深度学习·算法·机器学习·数据挖掘
小爬虫程序猿3 小时前
如何利用Python解析API返回的数据结构?
数据结构·数据库·python
pianmian17 小时前
python数据结构基础(7)
数据结构·算法
好奇龙猫9 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
sp_fyf_202410 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘