中文语音标注工具FunASR(语音识别)

全称 A Fundamental End-to-End Speech Recognition Toolkit(一个语音识别工具)

可能大家用过whisper(openAi),它【标注英语的确很完美】,【但中文会出现标注错误】或搞了个没说的词替换上去,所以要人工核对,麻烦。

FunASR作用:能【准确】识别语音,并转成【文字、标出声调】


他的原理,就不讲了,俺是搞大数据的,python这东西就勉强能写个爬虫和接口,机器学习和ai相关的算法是0基础。


直接实战吧

首先,冲他这句话,我要给他点个赞!!!很是感动。

分2个步骤,安装和模型

安装:

目前只支持cpu方式(等gpu版本出来了,那速度更上一层楼)

我们这里是用作标注 ,标注是对每一句进行标注 ,所以很 ,就【采用实时模型】。

ps:离线的模型太牛了,可以一次性标注几十小时的,感觉适合翻译有声阅读,感觉应用场景比较少

中文实时语音听写服务CPU版本部署

docker安装,不是我吹,docker是目前世界上最好的部署方法。

我建了一个文件夹fun_asr_docker_service所有的命令默认都在这个文件夹下操作

有docker的同学-可以忽略下面这个

1.安装docker(可以忽略)
bash 复制代码
curl -O https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/shell/install_docker.sh
sudo bash install_docker.sh
2.启动docker镜像

拉取镜像(大概将近4GB)

bash 复制代码
sudo docker pull \
  registry.cn-hangzhou.aliyuncs.com/funasr_repo/funasr:funasr-runtime-sdk-online-cpu-0.1.5

名字挺长的,改个名

bash 复制代码
sudo docker tag registry.cn-hangzhou.aliyuncs.com/funasr_repo/funasr:funasr-runtime-sdk-online-cpu-0.1.5 fun_asr

建立模型文件夹(对项目不熟悉的新手别乱改名哈--这个是阿里教程里的

bash 复制代码
mkdir -p ./funasr-runtime-resources/models

启动镜像(命令会进去镜像里面)

bash 复制代码
sudo docker run -p 10096:10095 -it --privileged=true \
  -v $PWD/funasr-runtime-resources/models:/workspace/models \
  fun_asr
3.启动服务

然后在docker镜像里面执行

bash 复制代码
cd FunASR/runtime
nohup bash run_server_2pass.sh \
  --download-model-dir /workspace/models \
  --vad-dir damo/speech_fsmn_vad_zh-cn-16k-common-onnx \
  --model-dir damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-onnx  \
  --online-model-dir damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-online-onnx  \
  --punc-dir damo/punc_ct-transformer_zh-cn-common-vad_realtime-vocab272727-onnx \
  --itn-dir thuduj12/fst_itn_zh \
  --certfile 0 \
  --hotword /workspace/models/hotwords.txt > log.out 2>&1 &
服务参数说明(具体是啥意思,看这个表)
bash 复制代码
# 如果您想关闭ssl,增加参数:--certfile 0
# 如果您想使用时间戳或者nn热词模型进行部署,请设置--model-dir为对应模型:
#   damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-onnx(时间戳)
#   damo/speech_paraformer-large-contextual_asr_nat-zh-cn-16k-common-vocab8404-onnx(nn热词)
# 如果您想在服务端加载热词,请在宿主机文件./funasr-runtime-resources/models/hotwords.txt配置热词(docker映射地址为/workspace/models/hotwords.txt):
#   每行一个热词,格式(热词 权重):阿里巴巴 20
--download-model-dir 模型下载地址,通过设置model ID从Modelscope下载模型
--model-dir  modelscope model ID 或者 本地模型路径
--online-model-dir  modelscope model ID 或者 本地模型路径
--quantize  True为量化ASR模型,False为非量化ASR模型,默认是True
--vad-dir  modelscope model ID 或者 本地模型路径
--vad-quant   True为量化VAD模型,False为非量化VAD模型,默认是True
--punc-dir  modelscope model ID 或者 本地模型路径
--punc-quant   True为量化PUNC模型,False为非量化PUNC模型,默认是True
--itn-dir modelscope model ID 或者 本地模型路径
--port  服务端监听的端口号,默认为 10095
--decoder-thread-num  服务端线程池个数(支持的最大并发路数),
                      脚本会根据服务器线程数自动配置decoder-thread-num、io-thread-num
--io-thread-num  服务端启动的IO线程数
--model-thread-num  每路识别的内部线程数(控制ONNX模型的并行),默认为 1,
                    其中建议 decoder-thread-num*model-thread-num 等于总线程数
--certfile  ssl的证书文件,默认为:../../../ssl_key/server.crt,如果需要关闭ssl,参数设置为0
--keyfile   ssl的密钥文件,默认为:../../../ssl_key/server.key
--hotword   热词文件路径,每行一个热词,格式:热词 权重(例如:阿里巴巴 20),
            如果客户端提供热词,则与客户端提供的热词合并一起使用,服务端热词全局生效,客户端热词只针对对应客户端生效。

启动成功

4.客户端测试

下载测试的打包文件(这里面包含了所有的客户端demo源文件)

wget https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/sample/funasr_samples.tar.gz

python测试

先在本地跑,然后要安装web-socket和pyauidio

python funasr_wss_client.py --host "ip" --port 10095 --mode 2pass --audio_in audio.wav

windows参考:---下面的第三种【 语音问题 】解决在win 32/64上无法安装 pyaudio ?_pyaudio安装 windows-CSDN博客

其他测试demo方法参考:

https://github.com/alibaba-damo-academy/FunASR/blob/main/runtime/docs/SDK_tutorial_online_zh.md#html-client

模型:

中文模型有【2个常用】

paraformer-zh(非实时,会生成时间戳)

paraformer-zh-online(实时,不会生成时间戳)

参考:

GitHub - alibaba-damo-academy/FunASR: A Fundamental End-to-End Speech Recognition Toolkit and Open Source SOTA Pretrained Models.

阿里达摩院开源大型端到端语音识别工具包FunASR | 弥合学术与工业应用之间的差距 - 知乎

相关推荐
开放知识图谱2 分钟前
论文浅尝 | 自提示方法实现大语言模型的零样本关系抽取(EMNLP2024)
人工智能·语言模型·自然语言处理
WSSWWWSSW3 分钟前
解释:神经网络
人工智能·深度学习·神经网络
巷9555 分钟前
BERT框架:自然语言处理的革命性突破
人工智能·自然语言处理·bert
我教你啊14 分钟前
微软押注“代理式AI网络”:一场重塑软件开发与工作方式的技术革命
人工智能·chatgpt
元气小嘉32 分钟前
Prompt、Agent、MCP关系
人工智能
坐吃山猪38 分钟前
RNN神经网络
人工智能·rnn·神经网络
九章云极AladdinEdu1 小时前
光子神经网络加速器编程范式研究:光子矩阵乘法的误差传播模型构建
开发语言·人工智能·深度学习·神经网络·矩阵·负载均衡·transformer
meisongqing2 小时前
【人工智能】低代码基础技术讲解,规则引擎,在低代码平台上的作用,有哪些规则引
人工智能·低代码
Blossom.1182 小时前
Web3.0:下一代互联网的变革与机遇
人工智能·深度学习·物联网·机器学习·web3·区块链·边缘计算
桑黄研究员2 小时前
论文解读 | 《药用真菌桑黄通过内质网应激 - 线粒体损伤诱导人宫颈癌细胞凋亡》
人工智能·健康医疗