torch 如何实现两点分布采样,100个样本中20个样本为1,80个为2

方法1

可以使用 PyTorch 中的 torch.distributions 模块实现两点分布采样。具体来说,可以使用 Categorical 分布将数字1和数字2的概率分别设为0.2和0.8,然后调用 sample() 方法进行采样。

下面是实现上述功能的代码示例:

python 复制代码
import torch
# 创建 Categorical 分布(数字1和数字2的概率分别设为0.2和0.8)
probs = torch.tensor([0.2, 0.8])
dist = torch.distributions.Categorical(probs)
# 从分布中采样100个样本
samples = dist.sample(torch.Size([100]))
# 统计样本中数字1和数字2的数量
count_1 = torch.sum(samples == 0)
count_2 = torch.sum(samples == 1)
print(f"数字1的数量:{count_1}")
print(f"数字2的数量:{count_2}")

输出结果类似于:

python 复制代码
数字1的数量:22
数字2的数量:78

方法2

可以先使用 torch.ones()torch.zeros() 函数生成分别包含20个数字1和80个数字2的张量,然后使用 torch.cat() 函数将它们拼接在一起,再使用 torch.randperm() 函数对其进行打乱。

下面是实现上述功能的代码示例:

python 复制代码
import torch
# 生成包含20个数字1和80个数字2的张量,并拼接在一起
ones_tensor = torch.ones(20)
zeros_tensor = torch.zeros(80)
data_tensor = torch.cat([ones_tensor, zeros_tensor], dim=0)
# 打乱张量中的元素顺序
shuffled_tensor = data_tensor[torch.randperm(data_tensor.shape[0])]
print(shuffled_tensor)

输出结果为:

python 复制代码
tensor([0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0., 1., 0., 0., 1.,
        1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 1., 0., 0.,
        0., 0., 0., 0., 1., 0., 0., 0., 1., 1., 0., 0., 1., 0., 0., 0., 0., 1.,
        1., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0., 1.])

其中,数字1被表示为1.0,数字2被表示为2.0。

相关推荐
NocoBase3 分钟前
GitHub 上最值得关注的 14 个开源 AI 低代码工具
人工智能·低代码·github
无风听海13 分钟前
神经网络之语义空间
人工智能·深度学习·神经网络
cxr82830 分钟前
AI提示工程第一性原理:精通原子提示,激发语言模型的基本单位
人工智能·语言模型·自然语言处理
X.AI6661 小时前
YouTube评论情感分析项目84%正确率:基于BERT的实战复现与原理解析
人工智能·深度学习·bert
艾莉丝努力练剑1 小时前
【C++:继承】面向对象编程精要:C++继承机制深度解析与最佳实践
开发语言·c++·人工智能·继承·c++进阶
小宁爱Python1 小时前
从零搭建 RAG 智能问答系统 6:Text2SQL 与工作流实现数据库查询
数据库·人工智能·python·django
Hard_Liquor1 小时前
Datawhale秋训营-“大运河杯”数据开发应用创新大赛
人工智能·深度学习·算法
运维行者_1 小时前
AWS云服务故障复盘——从故障中汲取的 IT 运维经验
大数据·linux·运维·服务器·人工智能·云计算·aws
Saniffer_SH2 小时前
搭载高性能GPU的英伟达Nvidia DGX Spark桌面性能小怪兽国内首台开箱视频!
人工智能·深度学习·神经网络·ubuntu·机器学习·语言模型·边缘计算
数字化脑洞实验室2 小时前
AI决策vs人工决策:效率的底层逻辑与选择边界
人工智能