LangChain 一 hello LLM

本来想先写LangChain系列的,但是最近被AutoGenLlamaIndex给吸引了。2023就要过去了,TIOBE数据编程语言排名Python都第一了,可见今年AI开发之热。好吧,一边学习业界通用的LangChain框架,一边准备跨年吧。

前言

先是OpenAI引爆AI狂热,再是Llama2、通义千问、文心一言百家齐放,最近Google Gemini一出来就是梭哈。LLM已逐步被传统应用整合,升级为AI应用。其中,LangChain这个AI框架功不可没。因为,针对如OpenAI的API调用太底层,也不够通用,还有些跟业务相结合的中间层,这些LangChain帮我们打理好了。

LangChain适合的业务

  • RAG 应用

LangChainLlamaIndex握手,快速开发检索增强知识库类应用。

  • 聊天机器人

反手给自己的应用添加一个AI客服。

  • 代理

即Agent, 辅助大模型完成特定任wy

OPENAI 等大模型

OPENAI最近变慢了,变笨了,但是目前,确实没太好的替代产品啊。

LangChain简化和统一了在应用中集成和利用大语言模型能力的过程。除了OpenAI外,LangChain还可以很方便的集成在Hugging Face上的各种模型。

运行第一个LangChain应用

本系列代码都会跑在google的colab云端,它用于运行一些nlp任务非常方便,省去了本地安装一大堆环境,建议学习的时候先用它。colab

我们这里使用的大模型是OpenAI,你需要一个api-key。

  • 安装LangChain和OpenAI
ini 复制代码
!pip install langchain==0.0.316
!pip install openai==0.28.1

这里使用的langchain是0.0.235版本,openai==0.28.1版本。请你在运行本教程代码时也使用这个版本。

  • hello langchain
python 复制代码
from langchain.chat_models import ChatOpenAI
from langchain.schema import HumanMessage

import os
os.environ['OPENAI_API_KEY'] = '您的有效OpenAI API Key'

chat = ChatOpenAI(temperature=0, model_name="gpt-3.5-turbo")
response = chat([ HumanMessage(content="Hello Langchain!") ])
print(response)

Langchain提供了聊天模型模块,有了chat_models,做聊天so easy!我们从chat_models里导入ChatOpenAI。temperature参数为自由度,值的范围在0-1之间,值越小,LLM的返回就越严谨,越大就越随意。如果你是要OpenAI给你写首诗,这个值 越大越好。如果你是要OpenAI告诉你法条中某事怎么个理,这个值接近0最好,不然,它便是法外狂徒。第二个参数我们指定了模型的名字,在这里,我们使用的是gpt-3.5-turbo,如果你非常有马内,也可以用gpt-4.0。

我们引入了os 系统模块,并将api_key 存入到OPENAI_API_KEY这个系统变量中。默认情况下,Langchain会从环境变量 OPENAI_API_KEY 中读取API Key。注意,在代码中直接嵌入API Key明文并不安全,切勿将API Key直接提交到代码仓库。我们建议利用.env文件和python-dotenv包来管理API Key

from langchain.schema import HumanMessage 提供了roleuser的聊天内容对象封装。如果您刚入门不久,建议先去刷下吴恩达老师的OpenAI 课程。我们在聊天时,内容是由content和role组成的。role分为system、user、assistant三种。在langchain的schema里提供了user这种角色的消息对象,简化了我们聊天的代码。

如果看到了下面这样的反馈,我们完成了LangChain的第一个聊天程序。

总结

  • 我们入门LangChain,了解其与OpenAI的关系,它对我们在业务中使用LLM提供了统一的封装。

参考资料

相关推荐
半导体老登几秒前
新能源汽车核心元件揭秘:二极管、三极管结构与工作原理解析(2/2)
人工智能·单片机·嵌入式硬件·汽车
Orange--Lin16 分钟前
【用deepseek和chatgpt做算法竞赛】——还得DeepSeek来 -Minimum Cost Trees_5
人工智能·算法·chatgpt
范桂飓22 分钟前
大规模 RDMA AI 组网技术创新:算法和可编程硬件的深度融合
人工智能
deflag34 分钟前
第P10周-Pytorch实现车牌号识别
人工智能·pytorch·yolo
pzx_00139 分钟前
【机器学习】K折交叉验证(K-Fold Cross-Validation)
人工智能·深度学习·算法·机器学习
海域云赵从友1 小时前
助力DeepSeek私有化部署服务:让企业AI落地更简单、更安全
人工智能·安全
伊一大数据&人工智能学习日志1 小时前
自然语言处理NLP 04案例——苏宁易购优质评论与差评分析
人工智能·python·机器学习·自然语言处理·数据挖掘
刀客1231 小时前
python3+TensorFlow 2.x(六)自编码器
人工智能·python·tensorflow
大模型之路1 小时前
Grok-3:人工智能领域的新突破
人工智能·llm·grok-3
闻道且行之2 小时前
LLaMA-Factory|微调大语言模型初探索(4),64G显存微调13b模型
人工智能·语言模型·llama·qlora·fsdp