做数据分析为何要学统计学(2)——如何估计总体概率分布

我们可以通过手头掌握的样本来估计总体的概率分布。这个过程由以下步骤组成。

第一步,我们采用Seaborn软件的histplot函数建立核密度图(一种概率密度图)。

复制代码
import numpy as np
#输入样本数据
x=np.array([2.12906357, 0.72736725, 1.05152821, 0.48600398, 1.91963227,
        1.62165678, 8.86319952, 0.24399412, 4.19883103, 2.80846683,
        1.34644303, 0.35146917, 1.7575424 , 3.90572887, 1.07404978,
        4.05247124, 0.65839571, 0.40166037, 2.03241598, 0.53592929])
import seaborn as sns
#kde=True会绘制概率密度曲线,否则只有直方图
sns.histplot(x,kde=True)

第二步,确定几个与之相近的候选概率分布(一般3个左右)。从上图来看,可以选择卡方分布、指数分布、伽玛分布。

第三步,分布拟合这三个候选分布的参数,并使用拟合得出的分布参数检验每一个候选分布

复制代码
import scipy.stats as stats
#构造候选分布集合
dists={'expon':stats.expon,'chi2':stats.chi2,'gamma':stats.gamma}

for dist in dists:
    #拟合每一个分布
    params=dists[dist].fit(x)
    #检验每一个分布
    test=stats.kstest(x,dists[dist].cdf,params)
    print(dist,test.pvalue,params)

第四步,选择p值(每一个值)最大的作为检验结果

复制代码
expon 0.9001 (0.016, 1.91)
chi2  0.3800 (1.78, 0.016, 1.37)
gamma 0.8080 (0.94, 0.016, 1.95)

从以上数据可以看出,样本最大可能是参数的指数分布。而事实上,原始样本确实是以生成的随机数样本

相关推荐
CAE3201 小时前
基于机器学习的智能垃圾短信检测超强系统
人工智能·python·机器学习·自然语言处理·垃圾短信拦截
一晌小贪欢6 小时前
【Html模板】电商运营可视化大屏模板 Excel存储 + 一键导出(已上线-可预览)
前端·数据分析·html·excel·数据看板·电商大屏·大屏看板
毕设源码-朱学姐9 小时前
【开题答辩全过程】以 海水水质监测大数据分析为例,包含答辩的问题和答案
数据挖掘·数据分析
深圳佛手11 小时前
AI 编程工具Claude Code 介绍
人工智能·python·机器学习·langchain
koo36412 小时前
李宏毅机器学习笔记43
人工智能·笔记·机器学习
工会主席-阿冰13 小时前
数据索引是无序时,直接用这个数据去画图的话,显示的图是错误的
开发语言·python·数据挖掘
程序猿追14 小时前
轻量级云原生体验:在OpenEuler 25.09上快速部署单节点K3s
人工智能·科技·机器学习·unity·游戏引擎
程序猿追15 小时前
异腾910B NPU实战:vLLM模型深度测评与部署指南
运维·服务器·人工智能·机器学习·架构
antonytyler16 小时前
机器学习实践项目(二)- 房价预测增强篇 - 模型训练与评估:从多模型对比到小网格微调
人工智能·机器学习
码界筑梦坊18 小时前
240-基于Python的医疗疾病数据可视化分析系统
开发语言·python·信息可视化·数据分析·毕业设计·echarts