论文阅读《Masked representation learning for domain generalized stereo matching》

论文地址:https://openaccess.thecvf.com/content/CVPR2023/html/Rao_Masked_Representation_Learning_for_Domain_Generalized_Stereo_Matching_CVPR_2023_paper.html


概述

近年来,立体匹配的领域泛化能力受到了越来越多的关注,但是现有的方法往往忽略了模型在不同训练阶段的泛化性能变化。如图1所示。现有的工作常使用带有标签的目标域样本来测试模型的泛化性能,而现实世界里,目标域数据集的标签是难以获取的。本文基于掩码表征学习和多任务学习的思想,提出了一种简单有效的掩码表征方法,用于提升立体匹配的领域泛化性能。具体地,将掩码后的左视图和完整的右视图作为模型的输入,然后利用一个轻量级的解码器和一个特征提取模块来重建完整的左视图。使用立体匹配误差和图像重建误差作为损失函数,来训练模型学习结构特征和增强泛化能力。在CFNet和LacGwcNet上添加了我们设计的模块,在多个数据集上的实验结果表明:(1)该方法可以方便地嵌入到现有的各种立体匹配模型中,用于提高模型的领域泛化能力。(2)该方法可以降低模型在不同训练阶段的泛化性能波动。


模型架构

参照MAE的做法,使用一个均匀分布确定遮挡的大小与比例来随机将左视图的像素mask,如图3所示:

继而将掩码后的左视图与未掩码的右视图送入特征提取网络来获取左右视图对应的特征。同时引入一个轻量化的网络从掩码后的左视图预测原图像,只在mask区域计算重建损失。


损失函数

图像重建损失(MSE 损失):
L r = 1 N ∑ i = 1 N ( I o ( i ) − I r ( i ) ) 2 , (1) \mathcal{L}r=\frac1N\sum{i=1}^N(I_o(i)-I_r(i))^2,\tag{1} Lr=N1i=1∑N(Io(i)−Ir(i))2,(1)

其中 N N N 为mask像素的个数, i i i 为被mask的像素。

总损失:
L = L r + L m . (2) \mathcal{L}=\mathcal{L}_r+\mathcal{L}_m.\tag{2} L=Lr+Lm.(2)

其中 L m \mathcal{L}_m Lm 为立体匹配损失。


实验结果







相关推荐
c0d1ng9 小时前
二月第二周周报(论文阅读)
论文阅读
DuHz9 小时前
通过超宽带信号估计位置——论文精读
论文阅读·人工智能·机器学习·自动驾驶·汽车
Biomamba生信基地9 小时前
《Science Advances》11例样本图谱文章,空间转录组揭示特发性肺纤维化病理特征
论文阅读·空间转录组分析
觉醒大王2 天前
哪些文章会被我拒稿?
论文阅读·笔记·深度学习·考研·自然语言处理·html·学习方法
觉醒大王2 天前
强女思维:着急,是贪欲外显的相。
java·论文阅读·笔记·深度学习·学习·自然语言处理·学习方法
张较瘦_2 天前
[论文阅读] AI | 用机器学习给深度学习库“体检”:大幅提升测试效率的新思路
论文阅读·人工智能·机器学习
m0_650108243 天前
IntNet:面向协同自动驾驶的通信驱动多智能体强化学习框架
论文阅读·marl·多智能体系统·网联自动驾驶·意图共享·自适应通讯·端到端协同
m0_650108243 天前
Raw2Drive:基于对齐世界模型的端到端自动驾驶强化学习方案
论文阅读·机器人·强化学习·端到端自动驾驶·双流架构·引导机制·mbrl自动驾驶
快降重科研小助手3 天前
前瞻与规范:AIGC降重API的技术演进与负责任使用
论文阅读·aigc·ai写作·降重·降ai·快降重
源于花海4 天前
IEEE TIE期刊论文学习——基于元学习与小样本重训练的锂离子电池健康状态估计方法
论文阅读·元学习·电池健康管理·并行网络·小样本重训练