论文阅读《Masked representation learning for domain generalized stereo matching》

论文地址:https://openaccess.thecvf.com/content/CVPR2023/html/Rao_Masked_Representation_Learning_for_Domain_Generalized_Stereo_Matching_CVPR_2023_paper.html


概述

近年来,立体匹配的领域泛化能力受到了越来越多的关注,但是现有的方法往往忽略了模型在不同训练阶段的泛化性能变化。如图1所示。现有的工作常使用带有标签的目标域样本来测试模型的泛化性能,而现实世界里,目标域数据集的标签是难以获取的。本文基于掩码表征学习和多任务学习的思想,提出了一种简单有效的掩码表征方法,用于提升立体匹配的领域泛化性能。具体地,将掩码后的左视图和完整的右视图作为模型的输入,然后利用一个轻量级的解码器和一个特征提取模块来重建完整的左视图。使用立体匹配误差和图像重建误差作为损失函数,来训练模型学习结构特征和增强泛化能力。在CFNet和LacGwcNet上添加了我们设计的模块,在多个数据集上的实验结果表明:(1)该方法可以方便地嵌入到现有的各种立体匹配模型中,用于提高模型的领域泛化能力。(2)该方法可以降低模型在不同训练阶段的泛化性能波动。


模型架构

参照MAE的做法,使用一个均匀分布确定遮挡的大小与比例来随机将左视图的像素mask,如图3所示:

继而将掩码后的左视图与未掩码的右视图送入特征提取网络来获取左右视图对应的特征。同时引入一个轻量化的网络从掩码后的左视图预测原图像,只在mask区域计算重建损失。


损失函数

图像重建损失(MSE 损失):
L r = 1 N ∑ i = 1 N ( I o ( i ) − I r ( i ) ) 2 , (1) \mathcal{L}r=\frac1N\sum{i=1}^N(I_o(i)-I_r(i))^2,\tag{1} Lr=N1i=1∑N(Io(i)−Ir(i))2,(1)

其中 N N N 为mask像素的个数, i i i 为被mask的像素。

总损失:
L = L r + L m . (2) \mathcal{L}=\mathcal{L}_r+\mathcal{L}_m.\tag{2} L=Lr+Lm.(2)

其中 L m \mathcal{L}_m Lm 为立体匹配损失。


实验结果







相关推荐
TuringAcademy7 小时前
AAAI爆款:目标检测新范式,模块化设计封神之作
论文阅读·人工智能·目标检测·论文笔记
图灵学术计算机论文辅导13 小时前
论文推荐|迁移学习+多模态特征融合
论文阅读·人工智能·深度学习·计算机网络·算法·计算机视觉·目标跟踪
七元权2 天前
论文阅读-Gated CRF Loss for Weakly Supervised Semantic Image Segmentation
论文阅读·深度学习·计算机视觉·语义分割·弱监督
有Li4 天前
关注与优化:用于骨龄评估的交互式关键点定位与颈椎定量分析|文献速递-深度学习人工智能医疗图像
论文阅读·医学生
AustinCyy4 天前
【论文笔记】DOC: Improving Long Story Coherence With Detailed Outline Control
论文阅读·nlp
weixin_443290695 天前
【论文阅读-Part1】PIKE-RAG: sPecIalized KnowledgE and Rationale Augmented Generation
大数据·论文阅读
不解风水7 天前
【论文阅读】一种基于经典机器学习的肌电下肢意图检测方法,用于人机交互系统
论文阅读·人机交互
爱补鱼的猫猫7 天前
17、CryptoMamba论文笔记
论文阅读
大熊背7 天前
《Fast Automatic White Balancing Method by Color Histogram Stretching》论文笔记
论文阅读·白平衡
CV-杨帆8 天前
论文阅读 arxiv 2024 MemGPT: Towards LLMs as Operating Systems
论文阅读