数组|73. 矩阵置零 48. 旋转图像

73. 矩阵置零

**题目:**给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。
题目链接: 矩阵置零

java 复制代码
class Solution {
    public void setZeroes(int[][] matrix) {
        Stack<int[]> mapofzero=new Stack<>();
        for(int i=0;i<matrix.length;i++){
            for(int j=0;j<matrix[0].length;j++){
                if(matrix[i][j]==0){
                    mapofzero.push(new int[]{i,j});
                }
            }
        }
        while(!mapofzero.isEmpty()){
            int[] node=mapofzero.peek();
            int x=node[0];
            int y=node[1];
            for(int i=0;i<matrix.length;i++){
                matrix[i][y]=0;
            }
            for(int j=0;j<matrix[0].length;j++){
                matrix[x][j]=0;
            }
            mapofzero.pop();
        }
    }
}

48. 旋转图像

**题目:**给定一个 n × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。
题目链接: 48.旋转图像

方法一:使用辅助矩阵

方法二:

java 复制代码
class Solution {
    public void rotate(int[][] matrix) {
        int n = matrix.length;
        for(int i=0;i<matrix.length/2;i++){
            for(int j=0;j<(matrix.length+1)/2;j++){
               int temp = matrix[i][j];
                matrix[i][j] = matrix[n - j - 1][i];
                matrix[n - j - 1][i] = matrix[n - i - 1][n - j - 1];
                matrix[n - i - 1][n - j - 1] = matrix[j][n - i - 1];
                matrix[j][n - i - 1] = temp;
            }
        }
    }
}
相关推荐
凯子坚持 c19 小时前
体系化AI开发方案:豆包新模型矩阵与PromptPilot自动化调优平台深度解析
人工智能·矩阵·自动化
草莓熊Lotso19 小时前
《算法闯关指南:优选算法--前缀和》--31.连续数组,32.矩阵区域和
c++·线性代数·算法·矩阵
logocode_li19 小时前
面试 LoRA 被问懵?B 矩阵初始化为 0 的原因,大多数人拿目标来回答
人工智能·python·面试·职场和发展·矩阵
AI科技星19 小时前
张祥前统一场论:引力场与磁矢势的关联,反引力场生成及拉格朗日点解析(网友问题解答)
开发语言·数据结构·经验分享·线性代数·算法
simon_skywalker21 小时前
线性代数及其应用习题答案(中文版)第一章 线性代数中的线性方程组 1.5 线性方程组的解集(1)
线性代数
跨境摸鱼1 天前
AI 赋能!亚马逊竞争情报的“重构式”升级,破解竞品迷局
人工智能·矩阵·重构·跨境电商·亚马逊·防关联
独自破碎E1 天前
矩阵区间更新TLE?试试二维差分
java·线性代数·矩阵
simon_skywalker1 天前
线性代数及其应用习题答案(中文版)第一章 线性代数中的线性方程组 1.6 线性方程组的应用
线性代数
劈星斩月1 天前
3Blue1Brown《线性代数的本质》矩阵乘法与线性变换复合
线性代数·线性变换·矩阵乘法
qq_430855881 天前
线代第一章第四课:行列式的性质
线性代数·矩阵