数组|73. 矩阵置零 48. 旋转图像

73. 矩阵置零

**题目:**给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0 。请使用 原地 算法。
题目链接: 矩阵置零

java 复制代码
class Solution {
    public void setZeroes(int[][] matrix) {
        Stack<int[]> mapofzero=new Stack<>();
        for(int i=0;i<matrix.length;i++){
            for(int j=0;j<matrix[0].length;j++){
                if(matrix[i][j]==0){
                    mapofzero.push(new int[]{i,j});
                }
            }
        }
        while(!mapofzero.isEmpty()){
            int[] node=mapofzero.peek();
            int x=node[0];
            int y=node[1];
            for(int i=0;i<matrix.length;i++){
                matrix[i][y]=0;
            }
            for(int j=0;j<matrix[0].length;j++){
                matrix[x][j]=0;
            }
            mapofzero.pop();
        }
    }
}

48. 旋转图像

**题目:**给定一个 n × n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。你必须在 原地 旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。
题目链接: 48.旋转图像

方法一:使用辅助矩阵

方法二:

java 复制代码
class Solution {
    public void rotate(int[][] matrix) {
        int n = matrix.length;
        for(int i=0;i<matrix.length/2;i++){
            for(int j=0;j<(matrix.length+1)/2;j++){
               int temp = matrix[i][j];
                matrix[i][j] = matrix[n - j - 1][i];
                matrix[n - j - 1][i] = matrix[n - i - 1][n - j - 1];
                matrix[n - i - 1][n - j - 1] = matrix[j][n - i - 1];
                matrix[j][n - i - 1] = temp;
            }
        }
    }
}
相关推荐
西西弗Sisyphus18 小时前
线性代数 - 叉积的分量形式与矩阵形式
线性代数·矩阵·行列式·determinant
豆沙粽子好吃嘛!1 天前
从LQR到iLQR的简明易懂过程(一)
线性代数
CoderYanger1 天前
A.每日一题——2536. 子矩阵元素加 1
java·线性代数·算法·leetcode·矩阵
醒过来摸鱼2 天前
9.12 sinc插值
python·线性代数·算法·numpy
虹科测试测量2 天前
德思特干货 | 单通道、多通道衰减器与衰减矩阵:如何选择合适的衰减方案
服务器·测试工具·算法·矩阵
ada7_2 天前
LeetCode(python)——73.矩阵置零
python·算法·leetcode·矩阵
羑悻的小杀马特2 天前
远程也能追热点:NewsNow精准筛选热榜,CPolar让信息获取不受地点限制
矩阵·cpolar·热点数据·newsnow
醒过来摸鱼3 天前
9.11 傅里叶变换家族介绍
线性代数·算法·概率论
醒过来摸鱼3 天前
9.8 贝塞尔曲线
线性代数·算法·numpy