【数据分析之Numpy】Numpy中位数函数numpy.median()的使用方法

一、简介

numpy.median() 是 Numpy 库中的一个函数,用于计算给定数据集或数组的中位数。

二、基本语法

numpy.median(a, axis=None, out=None, overwrite_input=False, keepdims=False)

参数:

a:输入数组。

axis:沿着哪个轴计算中位数。默认是 None,表示在所有维度上计算中位数。

out:可选参数,用于指定输出结果的位置,一般用于输出到某个维度相同的数组中。

overwrite_input:布尔值,如果为 True,则允许修改输入数组以节省内存。

keepdims:布尔值,如果为 True,则结果数组的维度与输入数组一致。

三、用法

1、求某个数组中位数

python 复制代码
import numpy as np

a = [1, 3, 1, 2, 3, 4, 5, 6, 7, 8, 2]

b = np.median(a)

print(b)

2、沿列方向求中位数

python 复制代码
a = [[1, 3, 1, 2, 3, 4, 5, 6, 7, 8, 2],
    [2, 4, 5, 6, 2, 1, 8, 1, 2,3, 9],
    [10, 2, 5, 0, 1, 1, 6, 4, 3, 2, 2]]

b = np.median(a, axis=0)

print(b)

3、沿行方向求中位数

python 复制代码
a = [[1, 3, 1, 2, 3, 4, 5, 6, 7, 8, 2],
    [2, 4, 5, 6, 2, 1, 8, 1, 2,3, 9],
    [10, 2, 5, 0, 1, 1, 6, 4, 3, 2, 2]]

b = np.median(a, axis=1)

print(b)

4、指定输出结果的位置

python 复制代码
temp_array = np.empty((3,))

a = [[1, 3, 1, 2, 3, 4, 5, 6, 7, 8, 2],
    [2, 4, 5, 6, 2, 1, 8, 1, 2,3, 9],
    [10, 2, 5, 0, 1, 1, 6, 4, 3, 2, 2]]

np.median(a, axis=1, out=temp_array)

print(temp)

5、允许修改输入数组

python 复制代码
a = [[1, 3, 1, 2, 3, 4, 5, 6, 7, 8, 2],
    [2, 4, 5, 6, 2, 1, 8, 1, 2,3, 9],
    [10, 2, 5, 0, 1, 1, 6, 4, 3, 2, 2]]

b = np.median(a, axis=1, overwrite_input=True)

print(b)

6、结果数组的维度与输入数组一致

python 复制代码
a = [[1, 3, 1, 2, 3, 4, 5, 6, 7, 8, 2],
    [2, 4, 5, 6, 2, 1, 8, 1, 2,3, 9],
    [10, 2, 5, 0, 1, 1, 6, 4, 3, 2, 2]]

b = np.median(a, axis=1, keepdims=True)

print(b)
相关推荐
bmcyzs12 小时前
【展厅多媒体】触摸查询一体机实现数据可视化
经验分享·科技·信息可视化·数据挖掘·数据分析·设计规范
Geoking.13 小时前
NumPy zeros() 函数详解
python·numpy
Dev7z17 小时前
舌苔舌象分类图像数据集
人工智能·分类·数据挖掘
CoookeCola18 小时前
MovieNet(A holistic dataset for movie understanding) :面向电影理解的多模态综合数据集与工具链
数据仓库·人工智能·目标检测·计算机视觉·数据挖掘
jarreyer20 小时前
常见分析方法与对应图表汇总
python·信息可视化·数据分析
m***记21 小时前
Python 数据分析入门:Pandas vs NumPy 全方位对比
python·数据分析·pandas
西贝爱学习1 天前
2025电脑价格数据集/构建电脑价格预测模型/数据量为 10 万行
数据分析·电脑
中达瑞和-高光谱·多光谱1 天前
多光谱图像颜色特征用于茶叶分类的研究进展
人工智能·分类·数据挖掘
Q26433650231 天前
【有源码】基于Python与Spark的火锅店数据可视化分析系统-基于机器学习的火锅店综合竞争力评估与可视化分析-基于用户画像聚类的火锅店市场细分与可视化研究
大数据·hadoop·python·机器学习·数据分析·spark·毕业设计
weixin_519535772 天前
从ChatGPT到新质生产力:一份数据驱动的AI研究方向指南
人工智能·深度学习·机器学习·ai·chatgpt·数据分析·aigc