【数据分析之Numpy】Numpy中位数函数numpy.median()的使用方法

一、简介

numpy.median() 是 Numpy 库中的一个函数,用于计算给定数据集或数组的中位数。

二、基本语法

numpy.median(a, axis=None, out=None, overwrite_input=False, keepdims=False)

参数:

a:输入数组。

axis:沿着哪个轴计算中位数。默认是 None,表示在所有维度上计算中位数。

out:可选参数,用于指定输出结果的位置,一般用于输出到某个维度相同的数组中。

overwrite_input:布尔值,如果为 True,则允许修改输入数组以节省内存。

keepdims:布尔值,如果为 True,则结果数组的维度与输入数组一致。

三、用法

1、求某个数组中位数

python 复制代码
import numpy as np

a = [1, 3, 1, 2, 3, 4, 5, 6, 7, 8, 2]

b = np.median(a)

print(b)

2、沿列方向求中位数

python 复制代码
a = [[1, 3, 1, 2, 3, 4, 5, 6, 7, 8, 2],
    [2, 4, 5, 6, 2, 1, 8, 1, 2,3, 9],
    [10, 2, 5, 0, 1, 1, 6, 4, 3, 2, 2]]

b = np.median(a, axis=0)

print(b)

3、沿行方向求中位数

python 复制代码
a = [[1, 3, 1, 2, 3, 4, 5, 6, 7, 8, 2],
    [2, 4, 5, 6, 2, 1, 8, 1, 2,3, 9],
    [10, 2, 5, 0, 1, 1, 6, 4, 3, 2, 2]]

b = np.median(a, axis=1)

print(b)

4、指定输出结果的位置

python 复制代码
temp_array = np.empty((3,))

a = [[1, 3, 1, 2, 3, 4, 5, 6, 7, 8, 2],
    [2, 4, 5, 6, 2, 1, 8, 1, 2,3, 9],
    [10, 2, 5, 0, 1, 1, 6, 4, 3, 2, 2]]

np.median(a, axis=1, out=temp_array)

print(temp)

5、允许修改输入数组

python 复制代码
a = [[1, 3, 1, 2, 3, 4, 5, 6, 7, 8, 2],
    [2, 4, 5, 6, 2, 1, 8, 1, 2,3, 9],
    [10, 2, 5, 0, 1, 1, 6, 4, 3, 2, 2]]

b = np.median(a, axis=1, overwrite_input=True)

print(b)

6、结果数组的维度与输入数组一致

python 复制代码
a = [[1, 3, 1, 2, 3, 4, 5, 6, 7, 8, 2],
    [2, 4, 5, 6, 2, 1, 8, 1, 2,3, 9],
    [10, 2, 5, 0, 1, 1, 6, 4, 3, 2, 2]]

b = np.median(a, axis=1, keepdims=True)

print(b)
相关推荐
咚咚王者7 小时前
人工智能之数据分析 Matplotlib:第七章 项目实践
人工智能·数据分析·matplotlib
科研面壁者7 小时前
Origin科研绘图——将“普通饼图”升级为“半环形饼图”
数据分析·origin·数据处理·科研绘图
谢景行^顾7 小时前
numpy
开发语言·python·numpy
人大博士的交易之路8 小时前
今日行情明日机会——20251201
大数据·数学建模·数据挖掘·数据分析·缠论·道琼斯结构·涨停板
GIS数据转换器11 小时前
基于GIS的智慧招商引资数据可视化系统
人工智能·信息可视化·数据挖掘·数据分析·无人机·旅游
Python极客之家12 小时前
基于数据挖掘的微博情感分析及话题追踪系统
python·数据挖掘·毕业设计·课程设计·情感分析
paperxie_xiexuo12 小时前
从数据观测到学术断言:面向证据链构建的智能分析工具协同机制研究
大数据·人工智能·机器学习·数据分析
城数派12 小时前
2025年我国各城市公交站点与线路矢量数据shp格式
数据分析
~~李木子~~12 小时前
数据可视化:App Store数据分析:价格、类别与用户评分的深度洞察
信息可视化·数据挖掘·数据分析