【数据分析之Numpy】Numpy中位数函数numpy.median()的使用方法

一、简介

numpy.median() 是 Numpy 库中的一个函数,用于计算给定数据集或数组的中位数。

二、基本语法

numpy.median(a, axis=None, out=None, overwrite_input=False, keepdims=False)

参数:

a:输入数组。

axis:沿着哪个轴计算中位数。默认是 None,表示在所有维度上计算中位数。

out:可选参数,用于指定输出结果的位置,一般用于输出到某个维度相同的数组中。

overwrite_input:布尔值,如果为 True,则允许修改输入数组以节省内存。

keepdims:布尔值,如果为 True,则结果数组的维度与输入数组一致。

三、用法

1、求某个数组中位数

python 复制代码
import numpy as np

a = [1, 3, 1, 2, 3, 4, 5, 6, 7, 8, 2]

b = np.median(a)

print(b)

2、沿列方向求中位数

python 复制代码
a = [[1, 3, 1, 2, 3, 4, 5, 6, 7, 8, 2],
    [2, 4, 5, 6, 2, 1, 8, 1, 2,3, 9],
    [10, 2, 5, 0, 1, 1, 6, 4, 3, 2, 2]]

b = np.median(a, axis=0)

print(b)

3、沿行方向求中位数

python 复制代码
a = [[1, 3, 1, 2, 3, 4, 5, 6, 7, 8, 2],
    [2, 4, 5, 6, 2, 1, 8, 1, 2,3, 9],
    [10, 2, 5, 0, 1, 1, 6, 4, 3, 2, 2]]

b = np.median(a, axis=1)

print(b)

4、指定输出结果的位置

python 复制代码
temp_array = np.empty((3,))

a = [[1, 3, 1, 2, 3, 4, 5, 6, 7, 8, 2],
    [2, 4, 5, 6, 2, 1, 8, 1, 2,3, 9],
    [10, 2, 5, 0, 1, 1, 6, 4, 3, 2, 2]]

np.median(a, axis=1, out=temp_array)

print(temp)

5、允许修改输入数组

python 复制代码
a = [[1, 3, 1, 2, 3, 4, 5, 6, 7, 8, 2],
    [2, 4, 5, 6, 2, 1, 8, 1, 2,3, 9],
    [10, 2, 5, 0, 1, 1, 6, 4, 3, 2, 2]]

b = np.median(a, axis=1, overwrite_input=True)

print(b)

6、结果数组的维度与输入数组一致

python 复制代码
a = [[1, 3, 1, 2, 3, 4, 5, 6, 7, 8, 2],
    [2, 4, 5, 6, 2, 1, 8, 1, 2,3, 9],
    [10, 2, 5, 0, 1, 1, 6, 4, 3, 2, 2]]

b = np.median(a, axis=1, keepdims=True)

print(b)
相关推荐
smppbzyc38 分钟前
2025年亚太杯(中文赛项)数学建模B题【疾病的预测与大数据分析】原创论文讲解(含完整python代码)
python·数学建模·数据分析·数学建模竞赛·亚太杯数学建模·亚太杯
超龄超能程序猿2 小时前
(5)机器学习小白入门 YOLOv:数据需求与图像不足应对策略
人工智能·python·机器学习·numpy·pandas·scipy
cwn_3 小时前
回归(多项式回归)
人工智能·机器学习·数据挖掘·回归
Yolo566Q4 小时前
“SRP模型+”多技术融合在生态环境脆弱性评价模型构建、时空格局演变分析与RSEI 指数的生态质量评价及拓展应用
信息可视化·数据分析·单一职责原则
音程5 小时前
什么是Jaccard 相似度(Jaccard Similarity)
深度学习·数据挖掘
乙真仙人5 小时前
AI Agents时代,数据分析将彻底被颠覆
人工智能·数据挖掘·数据分析
wh_xia_jun7 小时前
基于 Python 的数据分析技术综述
开发语言·python·数据分析
Leo.yuan20 小时前
数据清洗(ETL/ELT)原理与工具选择指南:企业数字化转型的核心引擎
大数据·数据仓库·数据挖掘·数据分析·etl
李昊哲小课1 天前
销售数据可视化分析项目
python·信息可视化·数据分析·matplotlib·数据可视化·seaborn
isNotNullX1 天前
实时数仓和离线数仓还分不清楚?看完就懂了
大数据·数据库·数据仓库·人工智能·数据分析