【数据分析之Numpy】Numpy中位数函数numpy.median()的使用方法

一、简介

numpy.median() 是 Numpy 库中的一个函数,用于计算给定数据集或数组的中位数。

二、基本语法

numpy.median(a, axis=None, out=None, overwrite_input=False, keepdims=False)

参数:

a:输入数组。

axis:沿着哪个轴计算中位数。默认是 None,表示在所有维度上计算中位数。

out:可选参数,用于指定输出结果的位置,一般用于输出到某个维度相同的数组中。

overwrite_input:布尔值,如果为 True,则允许修改输入数组以节省内存。

keepdims:布尔值,如果为 True,则结果数组的维度与输入数组一致。

三、用法

1、求某个数组中位数

python 复制代码
import numpy as np

a = [1, 3, 1, 2, 3, 4, 5, 6, 7, 8, 2]

b = np.median(a)

print(b)

2、沿列方向求中位数

python 复制代码
a = [[1, 3, 1, 2, 3, 4, 5, 6, 7, 8, 2],
    [2, 4, 5, 6, 2, 1, 8, 1, 2,3, 9],
    [10, 2, 5, 0, 1, 1, 6, 4, 3, 2, 2]]

b = np.median(a, axis=0)

print(b)

3、沿行方向求中位数

python 复制代码
a = [[1, 3, 1, 2, 3, 4, 5, 6, 7, 8, 2],
    [2, 4, 5, 6, 2, 1, 8, 1, 2,3, 9],
    [10, 2, 5, 0, 1, 1, 6, 4, 3, 2, 2]]

b = np.median(a, axis=1)

print(b)

4、指定输出结果的位置

python 复制代码
temp_array = np.empty((3,))

a = [[1, 3, 1, 2, 3, 4, 5, 6, 7, 8, 2],
    [2, 4, 5, 6, 2, 1, 8, 1, 2,3, 9],
    [10, 2, 5, 0, 1, 1, 6, 4, 3, 2, 2]]

np.median(a, axis=1, out=temp_array)

print(temp)

5、允许修改输入数组

python 复制代码
a = [[1, 3, 1, 2, 3, 4, 5, 6, 7, 8, 2],
    [2, 4, 5, 6, 2, 1, 8, 1, 2,3, 9],
    [10, 2, 5, 0, 1, 1, 6, 4, 3, 2, 2]]

b = np.median(a, axis=1, overwrite_input=True)

print(b)

6、结果数组的维度与输入数组一致

python 复制代码
a = [[1, 3, 1, 2, 3, 4, 5, 6, 7, 8, 2],
    [2, 4, 5, 6, 2, 1, 8, 1, 2,3, 9],
    [10, 2, 5, 0, 1, 1, 6, 4, 3, 2, 2]]

b = np.median(a, axis=1, keepdims=True)

print(b)
相关推荐
2501_943695335 小时前
高职大数据技术专业,怎么参与开源数据分析项目积累经验?
大数据·数据分析·开源
实时数据8 小时前
一手资料结合大数据分析挖掘海量信息中的价值了解用户真实需求 实现精准营销
数据挖掘·数据分析
龙腾AI白云8 小时前
面向开放世界的具身智能泛化能力探索
数据挖掘
码界筑梦坊9 小时前
330-基于Python的社交媒体舆情监控系统
python·mysql·信息可视化·数据分析·django·毕业设计·echarts
invicinble9 小时前
对于对产品的理解
大数据·信息可视化·数据分析
城数派9 小时前
2026年1月全国各省市路网数据(Shp)
数据分析
B站_计算机毕业设计之家9 小时前
豆瓣电影数据可视化分析系统 | Python Flask框架 requests Echarts 大数据 人工智能 毕业设计源码(建议收藏)✅
大数据·python·机器学习·数据挖掘·flask·毕业设计·echarts
岱宗夫up10 小时前
Python 数据分析入门
开发语言·python·数据分析
lusasky11 小时前
海事监管数据挖掘技术栈
人工智能·数据挖掘
码界筑梦坊11 小时前
327-基于Django的兰州空气质量大数据可视化分析系统
python·信息可视化·数据分析·django·毕业设计·数据可视化