【数据分析之Numpy】Numpy中复制函数numpy.repeat()与numpy.tile()的使用方法及区别

一、简介

numpy.repeat()与numpy.tile()都是Numpy库中的复制函数,用于将数组中的元素重复指定的次数。

numpy.repeat()函数接受三个参数 :要重复的数组重复的次数重复的轴

numpy.tile()函数接受两个参数 :要重复的数组重复的次数。

二、基本语法

1、numpy.repeat(a, repeats, axis=None)

a为带操作的数组

repeats为复制的次数

axis为重复操作会沿着哪个轴进行, axis=0表示沿着行方向, axis=1表示沿着列方向。

2、numpy.tile(A, reps)

A为带操作的数组

reps是一个元组,指定了每个维度上的重复次数。

三、使用方法

1、numpy.repeat()

(1). 将数组中的每个元素重复3次

python 复制代码
import numpy as np

a = np.array([1,2,3])

b = np.repeat(a, 3)

print(b)

(2). 将数组中的每个元素沿行方向每一行重复3次

python 复制代码
a = np.array([[1,2,3], [4,5,6]])

b = np.repeat(a, 3, axis=0)

print(b)

**注意:**如果这里a是一维数组,那axis只能为0

(3). 将数组中的每个元素沿列方向每一列重复3次

python 复制代码
a = np.array([[1,2,3], [4,5,6]])

b = np.repeat(a, 3, axis=1)

print(b)

2、numpy.tile(A)

(1). 将数组中的每个元素重复3次

python 复制代码
import numpy as np

a = np.array([1,2,3])

b = np.tile(a, 3)

print(b)

(2). 将数组中的每个元素沿沿着第一个轴重复2次,沿着第二个轴重复3次,

1)a为一维数组

python 复制代码
a = np.array([1,2,3])

b = np.tile(a, (2, 3))

print(b) # 数组维度改变

2)a为多维数组

python 复制代码
a = np.array([[1,2,3], [4,5,6]])

b = np.tile(a, (2, 3))

print(b)

四、区别

np.repeat()和np.tile()在功能上有些相似,但它们之间存在一些重要的区别。

1、行为上

对于一维数组,np.repeat()会重复数组中的元素 ,而np.tile()则会复制整个数组。这意味着np.repeat()仅在数组的每个元素上应用重复操作,而np.tile()则在整个数组上应用复制操作。

对于非一维数组,np.repeat()仅在最后一个轴上重复,而np.tile()会在所有轴上复制数组。

2、性能上

对于大数组,np.tile()通常比np.repeat()更快,因为它可以更有效地利用缓存。

np.repeat()不会预先分配输出数组的内存,而是在运行时动态地创建输出数组。

np.tile()会预先分配输出数组的内存

3、参数

np.repeat()三个参数:要重复的数组、重复的次数和它沿着数组的哪个轴重复元素。

np.tile()两个参数(可以看为三个参数):要复制的数组和复制的次数(它沿着所有轴复制数组)。

4、原地操作

np.repeat()不会原地操作(即不会更改原始数组),而np.tile()则可以进行原地操作。

相关推荐
小白—人工智能40 分钟前
数据分析 —— 数据预处理
python·数据挖掘·数据分析
若叶时代43 分钟前
数据分析_Python
人工智能·python·数据分析
Blossom.1189 小时前
使用Python实现简单的人工智能聊天机器人
开发语言·人工智能·python·低代码·数据挖掘·机器人·云计算
莫叫石榴姐11 小时前
大模型在数据分析领域的研究综述
大数据·数据挖掘·数据分析
胡耀超12 小时前
霍夫圆变换全面解析(OpenCV)
人工智能·python·opencv·算法·计算机视觉·数据挖掘·数据安全
人大博士的交易之路14 小时前
今日行情明日机会——20250516
大数据·数学建模·数据挖掘·程序员创富·缠中说禅·涨停回马枪·道琼斯结构
小白学大数据15 小时前
Scrapy框架下地图爬虫的进度监控与优化策略
开发语言·爬虫·python·scrapy·数据分析
拓端研究室TRL18 小时前
Python与MySQL网站排名数据分析及多层感知机MLP、机器学习优化策略和地理可视化应用|附AI智能体数据代码
人工智能·python·mysql·机器学习·数据分析
Leo.yuan21 小时前
基于地图的数据可视化:解锁地理数据的真正价值
大数据·数据库·信息可视化·数据挖掘·数据分析
幽络源小助理1 天前
翼兴消防监控 – 大数据可视化HTML源码
信息可视化·数据分析·html