【数据分析之Numpy】Numpy中复制函数numpy.repeat()与numpy.tile()的使用方法及区别

一、简介

numpy.repeat()与numpy.tile()都是Numpy库中的复制函数,用于将数组中的元素重复指定的次数。

numpy.repeat()函数接受三个参数 :要重复的数组重复的次数重复的轴

numpy.tile()函数接受两个参数 :要重复的数组重复的次数。

二、基本语法

1、numpy.repeat(a, repeats, axis=None)

a为带操作的数组

repeats为复制的次数

axis为重复操作会沿着哪个轴进行, axis=0表示沿着行方向, axis=1表示沿着列方向。

2、numpy.tile(A, reps)

A为带操作的数组

reps是一个元组,指定了每个维度上的重复次数。

三、使用方法

1、numpy.repeat()

(1). 将数组中的每个元素重复3次

python 复制代码
import numpy as np

a = np.array([1,2,3])

b = np.repeat(a, 3)

print(b)

(2). 将数组中的每个元素沿行方向每一行重复3次

python 复制代码
a = np.array([[1,2,3], [4,5,6]])

b = np.repeat(a, 3, axis=0)

print(b)

**注意:**如果这里a是一维数组,那axis只能为0

(3). 将数组中的每个元素沿列方向每一列重复3次

python 复制代码
a = np.array([[1,2,3], [4,5,6]])

b = np.repeat(a, 3, axis=1)

print(b)

2、numpy.tile(A)

(1). 将数组中的每个元素重复3次

python 复制代码
import numpy as np

a = np.array([1,2,3])

b = np.tile(a, 3)

print(b)

(2). 将数组中的每个元素沿沿着第一个轴重复2次,沿着第二个轴重复3次,

1)a为一维数组

python 复制代码
a = np.array([1,2,3])

b = np.tile(a, (2, 3))

print(b) # 数组维度改变

2)a为多维数组

python 复制代码
a = np.array([[1,2,3], [4,5,6]])

b = np.tile(a, (2, 3))

print(b)

四、区别

np.repeat()和np.tile()在功能上有些相似,但它们之间存在一些重要的区别。

1、行为上

对于一维数组,np.repeat()会重复数组中的元素 ,而np.tile()则会复制整个数组。这意味着np.repeat()仅在数组的每个元素上应用重复操作,而np.tile()则在整个数组上应用复制操作。

对于非一维数组,np.repeat()仅在最后一个轴上重复,而np.tile()会在所有轴上复制数组。

2、性能上

对于大数组,np.tile()通常比np.repeat()更快,因为它可以更有效地利用缓存。

np.repeat()不会预先分配输出数组的内存,而是在运行时动态地创建输出数组。

np.tile()会预先分配输出数组的内存

3、参数

np.repeat()三个参数:要重复的数组、重复的次数和它沿着数组的哪个轴重复元素。

np.tile()两个参数(可以看为三个参数):要复制的数组和复制的次数(它沿着所有轴复制数组)。

4、原地操作

np.repeat()不会原地操作(即不会更改原始数组),而np.tile()则可以进行原地操作。

相关推荐
阿里云大数据AI技术35 分钟前
ODPS 十五周年实录 | 为 AI 而生的数据平台
大数据·数据分析·开源
SelectDB技术团队1 小时前
Apache Doris 在菜鸟的大规模湖仓业务场景落地实践
数据库·数据仓库·数据分析·apache doris·菜鸟技术
一个处女座的程序猿2 小时前
DataAnalytics之Tool:Metabase的简介、安装和使用方法、案例应用之详细攻略
数据分析
星期天要睡觉4 小时前
机器学习深度学习 所需数据的清洗实战案例 (结构清晰、万字解析、完整代码)包括机器学习方法预测缺失值的实践
人工智能·深度学习·机器学习·数据挖掘
山烛6 小时前
矿物分类系统开发笔记(二):模型训练[删除空缺行]
人工智能·笔记·python·机器学习·分类·数据挖掘
Tezign_space10 小时前
特赞内容运营解决方案,AI重构品牌内容价值链
大数据·人工智能·数据挖掘·产品运营·内容运营·内容+ai·agentai
喂完待续19 小时前
【Tech Arch】Spark为何成为大数据引擎之王
大数据·hadoop·python·数据分析·spark·apache·mapreduce
源码宝21 小时前
【智慧工地源码】智慧工地云平台系统,涵盖安全、质量、环境、人员和设备五大管理模块,实现实时监控、智能预警和数据分析。
java·大数据·spring cloud·数据分析·源码·智慧工地·云平台
SelectDB1 天前
Apache Doris 4.0 AI 能力揭秘(一):AI 函数之 LLM 函数介绍
数据库·人工智能·数据分析
数据超市1 天前
香港数据合集:建筑物、手机基站、POI、职住数据、用地类型
大数据·人工智能·智能手机·数据挖掘·数据分析