【数据分析之Numpy】Numpy中复制函数numpy.repeat()与numpy.tile()的使用方法及区别

一、简介

numpy.repeat()与numpy.tile()都是Numpy库中的复制函数,用于将数组中的元素重复指定的次数。

numpy.repeat()函数接受三个参数 :要重复的数组重复的次数重复的轴

numpy.tile()函数接受两个参数 :要重复的数组重复的次数。

二、基本语法

1、numpy.repeat(a, repeats, axis=None)

a为带操作的数组

repeats为复制的次数

axis为重复操作会沿着哪个轴进行, axis=0表示沿着行方向, axis=1表示沿着列方向。

2、numpy.tile(A, reps)

A为带操作的数组

reps是一个元组,指定了每个维度上的重复次数。

三、使用方法

1、numpy.repeat()

(1). 将数组中的每个元素重复3次

python 复制代码
import numpy as np

a = np.array([1,2,3])

b = np.repeat(a, 3)

print(b)

(2). 将数组中的每个元素沿行方向每一行重复3次

python 复制代码
a = np.array([[1,2,3], [4,5,6]])

b = np.repeat(a, 3, axis=0)

print(b)

**注意:**如果这里a是一维数组,那axis只能为0

(3). 将数组中的每个元素沿列方向每一列重复3次

python 复制代码
a = np.array([[1,2,3], [4,5,6]])

b = np.repeat(a, 3, axis=1)

print(b)

2、numpy.tile(A)

(1). 将数组中的每个元素重复3次

python 复制代码
import numpy as np

a = np.array([1,2,3])

b = np.tile(a, 3)

print(b)

(2). 将数组中的每个元素沿沿着第一个轴重复2次,沿着第二个轴重复3次,

1)a为一维数组

python 复制代码
a = np.array([1,2,3])

b = np.tile(a, (2, 3))

print(b) # 数组维度改变

2)a为多维数组

python 复制代码
a = np.array([[1,2,3], [4,5,6]])

b = np.tile(a, (2, 3))

print(b)

四、区别

np.repeat()和np.tile()在功能上有些相似,但它们之间存在一些重要的区别。

1、行为上

对于一维数组,np.repeat()会重复数组中的元素 ,而np.tile()则会复制整个数组。这意味着np.repeat()仅在数组的每个元素上应用重复操作,而np.tile()则在整个数组上应用复制操作。

对于非一维数组,np.repeat()仅在最后一个轴上重复,而np.tile()会在所有轴上复制数组。

2、性能上

对于大数组,np.tile()通常比np.repeat()更快,因为它可以更有效地利用缓存。

np.repeat()不会预先分配输出数组的内存,而是在运行时动态地创建输出数组。

np.tile()会预先分配输出数组的内存

3、参数

np.repeat()三个参数:要重复的数组、重复的次数和它沿着数组的哪个轴重复元素。

np.tile()两个参数(可以看为三个参数):要复制的数组和复制的次数(它沿着所有轴复制数组)。

4、原地操作

np.repeat()不会原地操作(即不会更改原始数组),而np.tile()则可以进行原地操作。

相关推荐
谅望者1 小时前
数据分析笔记14:Python文件操作
大数据·数据库·笔记·python·数据挖掘·数据分析
观远数据1 小时前
数据驱动零售新生态:观远BI打造终端经营“透视镜”
大数据·人工智能·信息可视化·数据分析·零售
思通数科人工智能大模型1 小时前
零售场景下的数智店商:解决盗损问题,化解隐性成本痛点
人工智能·目标检测·计算机视觉·数据挖掘·知识图谱·零售
源码之家3 小时前
基于python租房大数据分析系统 房屋数据分析推荐 scrapy爬虫+可视化大屏 贝壳租房网 计算机毕业设计 推荐系统(源码+文档)✅
大数据·爬虫·python·scrapy·数据分析·推荐算法·租房
源码之家3 小时前
机器学习:基于python租房推荐系统 预测算法 协同过滤推荐算法 房源信息 可视化 机器学习-线性回归预测模型 Flask框架(源码+文档)✅
大数据·python·算法·机器学习·数据分析·线性回归·推荐算法
阿里云大数据AI技术6 小时前
基于 Hologres 构建智能驾驶图像高性能分析系统
数据分析
醒过来摸鱼7 小时前
9.8 贝塞尔曲线
线性代数·算法·numpy
咚咚王者9 小时前
人工智能之数据分析 numpy:第五章 索引与切片
人工智能·数据分析·numpy
java1234_小锋10 小时前
[免费]基于python的Flask+Vue医疗疾病数据分析大屏可视化系统(机器学习随机森林算法+requests)【论文+源码+SQL脚本】
python·机器学习·数据分析·flask·疾病数据分析
谅望者10 小时前
数据分析笔记10:数据容器
笔记·数据挖掘·数据分析