【数据分析之Numpy】Numpy中复制函数numpy.repeat()与numpy.tile()的使用方法及区别

一、简介

numpy.repeat()与numpy.tile()都是Numpy库中的复制函数,用于将数组中的元素重复指定的次数。

numpy.repeat()函数接受三个参数 :要重复的数组重复的次数重复的轴

numpy.tile()函数接受两个参数 :要重复的数组重复的次数。

二、基本语法

1、numpy.repeat(a, repeats, axis=None)

a为带操作的数组

repeats为复制的次数

axis为重复操作会沿着哪个轴进行, axis=0表示沿着行方向, axis=1表示沿着列方向。

2、numpy.tile(A, reps)

A为带操作的数组

reps是一个元组,指定了每个维度上的重复次数。

三、使用方法

1、numpy.repeat()

(1). 将数组中的每个元素重复3次

python 复制代码
import numpy as np

a = np.array([1,2,3])

b = np.repeat(a, 3)

print(b)

(2). 将数组中的每个元素沿行方向每一行重复3次

python 复制代码
a = np.array([[1,2,3], [4,5,6]])

b = np.repeat(a, 3, axis=0)

print(b)

**注意:**如果这里a是一维数组,那axis只能为0

(3). 将数组中的每个元素沿列方向每一列重复3次

python 复制代码
a = np.array([[1,2,3], [4,5,6]])

b = np.repeat(a, 3, axis=1)

print(b)

2、numpy.tile(A)

(1). 将数组中的每个元素重复3次

python 复制代码
import numpy as np

a = np.array([1,2,3])

b = np.tile(a, 3)

print(b)

(2). 将数组中的每个元素沿沿着第一个轴重复2次,沿着第二个轴重复3次,

1)a为一维数组

python 复制代码
a = np.array([1,2,3])

b = np.tile(a, (2, 3))

print(b) # 数组维度改变

2)a为多维数组

python 复制代码
a = np.array([[1,2,3], [4,5,6]])

b = np.tile(a, (2, 3))

print(b)

四、区别

np.repeat()和np.tile()在功能上有些相似,但它们之间存在一些重要的区别。

1、行为上

对于一维数组,np.repeat()会重复数组中的元素 ,而np.tile()则会复制整个数组。这意味着np.repeat()仅在数组的每个元素上应用重复操作,而np.tile()则在整个数组上应用复制操作。

对于非一维数组,np.repeat()仅在最后一个轴上重复,而np.tile()会在所有轴上复制数组。

2、性能上

对于大数组,np.tile()通常比np.repeat()更快,因为它可以更有效地利用缓存。

np.repeat()不会预先分配输出数组的内存,而是在运行时动态地创建输出数组。

np.tile()会预先分配输出数组的内存

3、参数

np.repeat()三个参数:要重复的数组、重复的次数和它沿着数组的哪个轴重复元素。

np.tile()两个参数(可以看为三个参数):要复制的数组和复制的次数(它沿着所有轴复制数组)。

4、原地操作

np.repeat()不会原地操作(即不会更改原始数组),而np.tile()则可以进行原地操作。

相关推荐
kngines3 小时前
【字节跳动】数据挖掘面试题0003:有一个文件,每一行是一个数字,如何用 MapReduce 进行排序和求每个用户每个页面停留时间
人工智能·数据挖掘·mapreduce·面试题
蓝婷儿9 天前
Python 数据分析与可视化 Day 2 - 数据清洗基础
开发语言·python·数据分析
蓝婷儿10 天前
Python 数据分析与可视化 Day 5 - 数据可视化入门(Matplotlib & Seaborn)
python·信息可视化·数据分析
大数据CLUB10 天前
基于pyspark的北京历史天气数据分析及可视化_离线
大数据·hadoop·数据挖掘·数据分析·spark
不秃的卤蛋10 天前
回归任务与分类任务的区别
人工智能·分类·数据挖掘·回归
深空数字孪生10 天前
金融行业B端系统布局实战:风险管控与数据可视化的定制方案
信息可视化·金融·数据分析
电商API_1800790524710 天前
实现自动胡批量抓取唯品会商品详情数据的途径分享(官方API、网页爬虫)
java·前端·爬虫·数据挖掘·网络爬虫
大千AI助手10 天前
决策树:化繁为简的智能决策利器
人工智能·算法·决策树·机器学习·数据挖掘·tree·decisiontree
小葛呀10 天前
在大数据求职面试中如何回答分布式协调与数据挖掘问题
大数据·分布式·机器学习·面试·数据挖掘·互联网·技术栈