【数据分析之Numpy】Numpy中复制函数numpy.repeat()与numpy.tile()的使用方法及区别

一、简介

numpy.repeat()与numpy.tile()都是Numpy库中的复制函数,用于将数组中的元素重复指定的次数。

numpy.repeat()函数接受三个参数 :要重复的数组重复的次数重复的轴

numpy.tile()函数接受两个参数 :要重复的数组重复的次数。

二、基本语法

1、numpy.repeat(a, repeats, axis=None)

a为带操作的数组

repeats为复制的次数

axis为重复操作会沿着哪个轴进行, axis=0表示沿着行方向, axis=1表示沿着列方向。

2、numpy.tile(A, reps)

A为带操作的数组

reps是一个元组,指定了每个维度上的重复次数。

三、使用方法

1、numpy.repeat()

(1). 将数组中的每个元素重复3次

python 复制代码
import numpy as np

a = np.array([1,2,3])

b = np.repeat(a, 3)

print(b)

(2). 将数组中的每个元素沿行方向每一行重复3次

python 复制代码
a = np.array([[1,2,3], [4,5,6]])

b = np.repeat(a, 3, axis=0)

print(b)

**注意:**如果这里a是一维数组,那axis只能为0

(3). 将数组中的每个元素沿列方向每一列重复3次

python 复制代码
a = np.array([[1,2,3], [4,5,6]])

b = np.repeat(a, 3, axis=1)

print(b)

2、numpy.tile(A)

(1). 将数组中的每个元素重复3次

python 复制代码
import numpy as np

a = np.array([1,2,3])

b = np.tile(a, 3)

print(b)

(2). 将数组中的每个元素沿沿着第一个轴重复2次,沿着第二个轴重复3次,

1)a为一维数组

python 复制代码
a = np.array([1,2,3])

b = np.tile(a, (2, 3))

print(b) # 数组维度改变

2)a为多维数组

python 复制代码
a = np.array([[1,2,3], [4,5,6]])

b = np.tile(a, (2, 3))

print(b)

四、区别

np.repeat()和np.tile()在功能上有些相似,但它们之间存在一些重要的区别。

1、行为上

对于一维数组,np.repeat()会重复数组中的元素 ,而np.tile()则会复制整个数组。这意味着np.repeat()仅在数组的每个元素上应用重复操作,而np.tile()则在整个数组上应用复制操作。

对于非一维数组,np.repeat()仅在最后一个轴上重复,而np.tile()会在所有轴上复制数组。

2、性能上

对于大数组,np.tile()通常比np.repeat()更快,因为它可以更有效地利用缓存。

np.repeat()不会预先分配输出数组的内存,而是在运行时动态地创建输出数组。

np.tile()会预先分配输出数组的内存

3、参数

np.repeat()三个参数:要重复的数组、重复的次数和它沿着数组的哪个轴重复元素。

np.tile()两个参数(可以看为三个参数):要复制的数组和复制的次数(它沿着所有轴复制数组)。

4、原地操作

np.repeat()不会原地操作(即不会更改原始数组),而np.tile()则可以进行原地操作。

相关推荐
数据猎手小k3 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
sp_fyf_20244 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-11-01
人工智能·深度学习·神经网络·算法·机器学习·语言模型·数据挖掘
陈燚_重生之又为程序员4 小时前
基于梧桐数据库的实时数据分析解决方案
数据库·数据挖掘·数据分析
几两春秋梦_8 小时前
符号回归概念
人工智能·数据挖掘·回归
艾派森11 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
竹笋常青13 小时前
《流星落凡尘》
django·numpy
武子康15 小时前
大数据-212 数据挖掘 机器学习理论 - 无监督学习算法 KMeans 基本原理 簇内误差平方和
大数据·人工智能·学习·算法·机器学习·数据挖掘
Q81375746015 小时前
数据挖掘在金融交易中的应用:民锋科技的智能化布局
人工智能·科技·数据挖掘
布说在见15 小时前
魅力标签云,奇幻词云图 —— 数据可视化新境界
信息可视化·数据挖掘·数据分析
Tianyanxiao16 小时前
如何利用探商宝精准营销,抓住行业机遇——以AI技术与大数据推动企业信息精准筛选
大数据·人工智能·科技·数据分析·深度优先·零售