【论文阅读】RoSteALS: Robust Steganography using Autoencoder Latent Space-2023-CVPR

摘要

RoSteALS使用一个轻量级的秘密编码器将秘密信息映射到图像的潜空间中,并通过对潜空间进行微小的偏移来嵌入秘密信息。

该方法使用预训练的自编码器作为基础模型,不需要学习图像分布,因此训练过程简单且效果良好。

方法

架构图:训练期间只更新秘密编码器和秘密解码器,图像的编码器和解码器是锁定的

说明

使用自编码器VQGAN

利用编码器将秘密信息映射到图像的潜在层中,

使用Res50作为解码器,

当平均验证损失停止改善时,训练终止。

图像质量通过冻结的自编码器在第一次迭代中保证,编码器和解码器从头开始训练。

为了提高鲁棒性,插入了噪声模型,其中包括3种类型的噪声,可微的加性和线性噪声(亮度,饱和度,对比度),近似可微噪声(JPEG压缩),不可微噪声(飞溅)

实验数据集

MIRFlickR dataset 100k张,256*256的图像

PSNR在32~34之间,bit acc挺高,但是用了bch纠错码,实际负载率没那么高,而且没有做隐写分析的实验

即使在L=200中,训练也只需要30个epoch就能收敛,因为RoSteALS的唯一目标是学习秘密的编码和解码模块。

这篇代码还是很好复现的,3090显卡半小时能跑一个epoch(6000张train图),比较轻量

相关推荐
王上上1 小时前
【论文阅读25】-滑坡时间预测-PFTF
论文阅读
李一帆'2 小时前
【论文阅读】Hierarchical Group-Level Emotion Recognition
论文阅读·计算机视觉
nenchoumi311921 小时前
VLA 论文精读(十八)π0.5: a Vision-Language-Action Model with Open-World Generalization
论文阅读·人工智能·深度学习·语言模型·vla
江左子固2 天前
《Deep Learning Inference on Embedded Devices: Fixed-Point vs Posit》(一)
论文阅读
nenchoumi31192 天前
LLM 论文精读(二)Training Compute-Optimal Large Language Models
论文阅读·人工智能·笔记·学习·语言模型·自然语言处理
爱补鱼的猫猫2 天前
20、 DeepSeekMoE论文笔记
论文阅读·deepseekmoe
李一帆'2 天前
【论文阅读】Dual-branch Cross-Patch Attention Learning for Group Affect Recognition
论文阅读
初级炼丹师(爱说实话版)2 天前
Representation Flow for Action Recognition论文笔记
论文阅读
CV-杨帆2 天前
论文阅读:2025 arxiv AI Alignment: A Comprehensive Survey
论文阅读·人工智能
黄雪超3 天前
Flink介绍——实时计算核心论文之Dataflow论文详解
大数据·论文阅读·flink