种类并查集学习笔记&例题

一、种类并查集

当我们要维护朋友的朋友是朋友,敌人的敌人也是朋友的关系时,最朴素的做法是开两个并查集数组,写两个不同的find和merge函数,分别存敌人和朋友,但这样显然是比较麻烦。于是,我们可以将并查集开为平常大小的两倍,前一半用于维护一种关系,另一半用于维护另一种关系。假设B是A的敌人,那么合并(A+n)和B即可。

二、例题

题目: https://www.luogu.com.cn/problem/AT_abc327_d

思路:这题就是典型的种类并查集,一个数不是0就是1,所以与0相对的是1,与0相对再相对就还是0,可以利用种类并查集维护这样的关系,详见代码。

以下是ac代码(附带详细注释)

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define lop(i,a,b) for(int i=(a);i<(b);i++)
#define dwn(i,a,b) for(int i=(a);i>=(b);i--)
#define el 'n' 
typedef pair<int,int> PII;
using LL = long long;
const int INF=0x3f3f3f3f;
const int N=2e5+10;
int n,m;
int a[N],b[N];
int f[N*2];
int find(int x)//并查集找老大板子
{
    return x==f[x]?x:f[x]=find(f[x]);
}
void solve()
{
    cin>>n>>m;
    rep(i,1,n*2)f[i]=i;//初始化
    rep(i,1,m)cin>>a[i];
    rep(i,1,m)cin>>b[i];
    rep(i,1,m)
    {
        if(find(a[i])==find(b[i]))//都在前一半说明二者相等,与题目矛盾
        {
            cout<<"No";
            return;
        }
        f[find(a[i]+n)]=find(b[i]);//否则分别把后一半(意味着敌人的)与另一个合并
        f[find(n+b[i])]=find(a[i]);
    }
    cout<<"Yes";
}
int main()
{
    ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
    int t = 1;
    //cin>>t;
    while(t--)
      solve();
    return 0;
}
相关推荐
Tisfy20 分钟前
LeetCode 2536.子矩阵元素加 1:二维差分数组
算法·leetcode·矩阵
一个平凡而乐于分享的小比特35 分钟前
UCOS-III笔记(七)
笔记·ucosiii
北邮刘老师1 小时前
智能家居,需要的是“主控智能体”而不是“主控节点”
人工智能·算法·机器学习·智能体·智能体互联网
oioihoii1 小时前
C++中有双向映射数据结构吗?Key和Value能否双向查找?
数据结构·c++·算法
HalvmånEver1 小时前
Linux:基础开发工具(三)
linux·运维·服务器·开发语言·学习·gcc/g++
nnn__nnn1 小时前
图像分割技术全解析:从传统算法到深度学习的视觉分割革命
深度学习·算法·计算机视觉
_OP_CHEN1 小时前
算法基础篇:(八)贪心算法之简单贪心:从直觉到逻辑的实战指南
c++·算法·贪心算法·蓝桥杯·算法竞赛·acm/icpc·简单贪心
小欣加油1 小时前
leetcode 2536 子矩阵元素加1
数据结构·c++·算法·leetcode·矩阵
FAREWELL000751 小时前
Lua学习记录(1) --- Lua中的条件分支语句和循环语句
学习·lua
橘颂TA2 小时前
【剑斩OFFER】算法的暴力美学——二维前缀和
算法·c/c++·结构与算法