种类并查集学习笔记&例题

一、种类并查集

当我们要维护朋友的朋友是朋友,敌人的敌人也是朋友的关系时,最朴素的做法是开两个并查集数组,写两个不同的find和merge函数,分别存敌人和朋友,但这样显然是比较麻烦。于是,我们可以将并查集开为平常大小的两倍,前一半用于维护一种关系,另一半用于维护另一种关系。假设B是A的敌人,那么合并(A+n)和B即可。

二、例题

题目: https://www.luogu.com.cn/problem/AT_abc327_d

思路:这题就是典型的种类并查集,一个数不是0就是1,所以与0相对的是1,与0相对再相对就还是0,可以利用种类并查集维护这样的关系,详见代码。

以下是ac代码(附带详细注释)

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define lop(i,a,b) for(int i=(a);i<(b);i++)
#define dwn(i,a,b) for(int i=(a);i>=(b);i--)
#define el 'n' 
typedef pair<int,int> PII;
using LL = long long;
const int INF=0x3f3f3f3f;
const int N=2e5+10;
int n,m;
int a[N],b[N];
int f[N*2];
int find(int x)//并查集找老大板子
{
    return x==f[x]?x:f[x]=find(f[x]);
}
void solve()
{
    cin>>n>>m;
    rep(i,1,n*2)f[i]=i;//初始化
    rep(i,1,m)cin>>a[i];
    rep(i,1,m)cin>>b[i];
    rep(i,1,m)
    {
        if(find(a[i])==find(b[i]))//都在前一半说明二者相等,与题目矛盾
        {
            cout<<"No";
            return;
        }
        f[find(a[i]+n)]=find(b[i]);//否则分别把后一半(意味着敌人的)与另一个合并
        f[find(n+b[i])]=find(a[i]);
    }
    cout<<"Yes";
}
int main()
{
    ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
    int t = 1;
    //cin>>t;
    while(t--)
      solve();
    return 0;
}
相关推荐
Code Slacker12 分钟前
LeetCode Hot100 —— 滑动窗口(面试纯背版)(四)
数据结构·c++·算法·leetcode
hssfscv14 分钟前
Javaweb 学习笔记——html+css
前端·笔记·学习
brave and determined16 分钟前
CANN训练营 学习(day8)昇腾大模型推理调优实战指南
人工智能·算法·机器学习·ai实战·昇腾ai·ai推理·实战记录
Mr.Jessy21 分钟前
JavaScript高级:深浅拷贝、异常处理、防抖及节流
开发语言·前端·javascript·学习
博客胡1 小时前
Python-fastAPI的学习与使用
学习·fastapi·ai编程
总爱写点小BUG1 小时前
打印不同的三角形(C语言)
java·c语言·算法
yaoh.wang1 小时前
力扣(LeetCode) 27: 移除元素 - 解法思路
python·程序人生·算法·leetcode·面试·职场和发展·双指针
HyperAI超神经1 小时前
【Triton 教程】triton_language.load
人工智能·学习·大语言模型·cpu·gpu·编程语言·triton
2401_841495641 小时前
【自然语言处理】中文 n-gram 词模型
人工智能·python·算法·自然语言处理·n-gram·中文文本生成模型·kneser-ney平滑
知识分享小能手1 小时前
Ubuntu入门学习教程,从入门到精通,Linux操作系统概述(1)
linux·学习·ubuntu