种类并查集学习笔记&例题

一、种类并查集

当我们要维护朋友的朋友是朋友,敌人的敌人也是朋友的关系时,最朴素的做法是开两个并查集数组,写两个不同的find和merge函数,分别存敌人和朋友,但这样显然是比较麻烦。于是,我们可以将并查集开为平常大小的两倍,前一半用于维护一种关系,另一半用于维护另一种关系。假设B是A的敌人,那么合并(A+n)和B即可。

二、例题

题目: https://www.luogu.com.cn/problem/AT_abc327_d

思路:这题就是典型的种类并查集,一个数不是0就是1,所以与0相对的是1,与0相对再相对就还是0,可以利用种类并查集维护这样的关系,详见代码。

以下是ac代码(附带详细注释)

cpp 复制代码
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define lop(i,a,b) for(int i=(a);i<(b);i++)
#define dwn(i,a,b) for(int i=(a);i>=(b);i--)
#define el 'n' 
typedef pair<int,int> PII;
using LL = long long;
const int INF=0x3f3f3f3f;
const int N=2e5+10;
int n,m;
int a[N],b[N];
int f[N*2];
int find(int x)//并查集找老大板子
{
    return x==f[x]?x:f[x]=find(f[x]);
}
void solve()
{
    cin>>n>>m;
    rep(i,1,n*2)f[i]=i;//初始化
    rep(i,1,m)cin>>a[i];
    rep(i,1,m)cin>>b[i];
    rep(i,1,m)
    {
        if(find(a[i])==find(b[i]))//都在前一半说明二者相等,与题目矛盾
        {
            cout<<"No";
            return;
        }
        f[find(a[i]+n)]=find(b[i]);//否则分别把后一半(意味着敌人的)与另一个合并
        f[find(n+b[i])]=find(a[i]);
    }
    cout<<"Yes";
}
int main()
{
    ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);
    int t = 1;
    //cin>>t;
    while(t--)
      solve();
    return 0;
}
相关推荐
福尔摩斯张11 分钟前
C++核心特性精讲:从C语言痛点出发,掌握现代C++编程精髓(超详细)
java·linux·c语言·数据结构·c++·驱动开发·算法
charlie11451419133 分钟前
如何快速在 VS2026 上使用 C++ 模块 — 完整上手指南
开发语言·c++·笔记·学习·现代c++
涛涛北京40 分钟前
【强化学习实验】- 策略梯度算法
人工智能·算法
栀秋6661 小时前
深入浅出链表操作:从Dummy节点到快慢指针的实战精要
前端·javascript·算法
Pyeako1 小时前
机器学习之KNN算法
人工智能·算法·机器学习
xhxxx1 小时前
从被追问到被点赞:我靠“哨兵+快慢指针”展示了面试官真正想看的代码思维
javascript·算法·面试
可信计算1 小时前
【算法随想】一种基于“视觉表征图”拓扑变化的NLP序列预测新范式
人工智能·笔记·python·算法·自然语言处理
月明长歌1 小时前
【码道初阶】【LeetCode 110】平衡二叉树:如何用一个“Magic Number”将复杂度从O(N²)降为 O(N)?
linux·算法·leetcode
yaoh.wang1 小时前
力扣(LeetCode) 14: 最长公共前缀 - 解法思路
python·程序人生·算法·leetcode·面试·职场和发展·跳槽
历程里程碑2 小时前
C++ 9 stack_queue:数据结构的核心奥秘
java·开发语言·数据结构·c++·windows·笔记·算法