数据分析为何要学统计学(10)——如何进行比率检验

比率检验是通过样本推测某种事件的总体占比水平。要求事件仅有互斥的两种情况,即,概率分别为p与1-p。

比率检验分单样本和双样本两种情况,以下我们分别介绍。

1. 单样本比率检验

形如这样的问题:"小学生近视比例日益提高,抽取500个小学生进行视力测试,310个小学生近视,是否可认为小学生的近视比例超过了六成?"

进行单样本比率检验可用两种方法二项检验和z检验

二项检验(Bernoulli检验):对应n<30或np或n(1-p)小于5的情况。函数为statsmodels.stats.proportion.binom_test(count, nobs, value=0.5, alternative='two-sided');

z检验:对二项检验条件以外的情况。函数为statsmodels.stats.proportion.proportions_ztest(count, nobs, value=0.5, alternative='two-sided')。

参数说明:count------事件数,nobs------样本容量,value------比率, alternative------检验方向,默认双侧,还可以为larger和smaller。

上例nobs=500,p=60%,np=300,n(1-p)=200,满足z检验方法的使用条件。根据题意,可以如下代码求解:

python 复制代码
from statsmodels.stats import proportion
proportion.proportions_ztest(310,500,0.6,alternative='larger')

结果为p=0.0.1784>0.05,还不能接受H1:"小学生的近视比例超过了六成"的假设。尽管在比例上已经是62%,超过6成,但这只是部分代表的比例,而不是总体水平下的比例。

2. 双样本比率检验

可使用上述检验的双样本函数test_proportions_2indep(count1, nobs1, count2, nobs2, value=None, alternative='two-sided'),也可以使用Fisher精确检验(n<40或有理论值<1或p值接近0.05)或卡方检验(其它情况)。详见卡方检验文章。

相关推荐
LiJieNiub1 天前
YOLOv3:目标检测领域的经典革新
人工智能·计算机视觉·目标跟踪
yanxing.D1 天前
OpenCV轻松入门_面向python(第六章 阈值处理)
人工智能·python·opencv·计算机视觉
霍格沃兹测试开发学社测试人社区1 天前
新手指南:通过 Playwright MCP Server 为 AI Agent 实现浏览器自动化能力
运维·人工智能·自动化
JJJJ_iii1 天前
【机器学习01】监督学习、无监督学习、线性回归、代价函数
人工智能·笔记·python·学习·机器学习·jupyter·线性回归
qq_416276421 天前
LOFAR物理频谱特征提取及实现
人工智能
余俊晖1 天前
如何构造一个文档解析的多模态大模型?MinerU2.5架构、数据、训练方法
人工智能·文档解析
Akamai中国1 天前
Linebreak赋能实时化企业转型:专业系统集成商携手Akamai以实时智能革新企业运营
人工智能·云计算·云服务
LiJieNiub1 天前
读懂目标检测:从基础概念到主流算法
人工智能·计算机视觉·目标跟踪
weixin_519535771 天前
从ChatGPT到新质生产力:一份数据驱动的AI研究方向指南
人工智能·深度学习·机器学习·ai·chatgpt·数据分析·aigc
爱喝白开水a1 天前
LangChain 基础系列之 Prompt 工程详解:从设计原理到实战模板_langchain prompt
开发语言·数据库·人工智能·python·langchain·prompt·知识图谱