数据分析为何要学统计学(10)——如何进行比率检验

比率检验是通过样本推测某种事件的总体占比水平。要求事件仅有互斥的两种情况,即,概率分别为p与1-p。

比率检验分单样本和双样本两种情况,以下我们分别介绍。

1. 单样本比率检验

形如这样的问题:"小学生近视比例日益提高,抽取500个小学生进行视力测试,310个小学生近视,是否可认为小学生的近视比例超过了六成?"

进行单样本比率检验可用两种方法二项检验和z检验

二项检验(Bernoulli检验):对应n<30或np或n(1-p)小于5的情况。函数为statsmodels.stats.proportion.binom_test(count, nobs, value=0.5, alternative='two-sided');

z检验:对二项检验条件以外的情况。函数为statsmodels.stats.proportion.proportions_ztest(count, nobs, value=0.5, alternative='two-sided')。

参数说明:count------事件数,nobs------样本容量,value------比率, alternative------检验方向,默认双侧,还可以为larger和smaller。

上例nobs=500,p=60%,np=300,n(1-p)=200,满足z检验方法的使用条件。根据题意,可以如下代码求解:

python 复制代码
from statsmodels.stats import proportion
proportion.proportions_ztest(310,500,0.6,alternative='larger')

结果为p=0.0.1784>0.05,还不能接受H1:"小学生的近视比例超过了六成"的假设。尽管在比例上已经是62%,超过6成,但这只是部分代表的比例,而不是总体水平下的比例。

2. 双样本比率检验

可使用上述检验的双样本函数test_proportions_2indep(count1, nobs1, count2, nobs2, value=None, alternative='two-sided'),也可以使用Fisher精确检验(n<40或有理论值<1或p值接近0.05)或卡方检验(其它情况)。详见卡方检验文章。

相关推荐
往事如yan1 分钟前
机器学习面试核心概念速览
人工智能·机器学习
北京耐用通信5 分钟前
协议翻译大师:耐达讯自动化EtherCAT转Devicenet,电动缸的‘毫秒级指令执行专家’
人工智能·物联网·网络协议·自动化·信息与通信
爱看科技6 分钟前
苹果以Apple Glasses入局AI穿戴赛道,微美全息多维发力AR眼镜加速市场博弈
人工智能·ar
song5017 分钟前
鸿蒙 Flutter 插件测试:多版本兼容性自动化测试
人工智能·分布式·flutter·华为·开源鸿蒙
AI视觉网奇8 分钟前
live2d 抠人脸
人工智能·opencv·计算机视觉
沫儿笙8 分钟前
KUKA库卡焊接机器人tag焊接节气
人工智能·机器人
jkyy201410 分钟前
智能科技如何重塑慢病饮食管理?饮食红绿灯给出新答案
人工智能·科技·健康医疗
韩曙亮13 分钟前
【自动驾驶】Autoware 架构 ① ( 自动驾驶的两种核心技术架构 | 基于规则技术架构 | 端到端技术架构 )
人工智能·自动驾驶·e2e·autoware·端到端·基于规则技术架构·端到端技术架构
_codemonster21 分钟前
AI大模型入门到实战系列(六)文本分类
人工智能·分类·数据挖掘
慧都小妮子26 分钟前
实时图形工具包GLG Toolkit:工业领域HMI数据可视化的优选产品
信息可视化·数据挖掘·数据分析