Pytorch读写张量文件

目录

一、加载和保存张量

1、直接读写张量

2、读写张量列表

3、读写张量字典

二、加载和保存模型参数


一、加载和保存张量

1、直接读写张量

对于单个张量,我们可以直接调用`load`和`save`函数分别读写它们。这两个函数都要求我们提供一个名称,`save`要求将要保存的变量作为输入。

python 复制代码
import torch
from torch import nn
from torch.nn import functional as F

x = torch.arange(4)
torch.save(x, 'x-file')

我们现在可以将存储在文件中的数据读回内存。

python 复制代码
x2 = torch.load('x-file')
print(x2)
python 复制代码
tensor([0, 1, 2, 3])

2、读写张量列表

我们可以存储一个张量列表,然后把它们读回内存。

python 复制代码
y = torch.zeros(4)
torch.save([x, y], 'x-files')
print(torch.load('x-files'))
# or
x2, y2 = torch.load('x-files')
print(x2, y2)
python 复制代码
[tensor([0, 1, 2, 3]), tensor([0., 0., 0., 0.])]
tensor([0, 1, 2, 3]) tensor([0., 0., 0., 0.])

3、读写张量字典

我们甚至可以写入或读取从字符串映射到张量的字典。当我们要读取或写入模型中的所有权重时,这很方便。

python 复制代码
mydict = {'x': x, 'y': y}
torch.save(mydict, 'mydict')
mydict2 = torch.load('mydict')
print(mydict2)
bash 复制代码
{'x': tensor([0, 1, 2, 3]), 'y': tensor([0., 0., 0., 0.])}

二、加载和保存模型参数

保存单个权重向量(或其他张量)确实有用,但是如果我们想保存整个模型,并在以后加载它们,单独保存每个向量则会变得很麻烦。毕竟,我们可能有数百个参数散布在各处。因此,深度学习框架提供了内置函数来保存和加载整个网络。**需要注意的一个重要细节是,这将保存模型的参数而不是保存整个模型。例如,如果我们有一个3层多层感知机,我们需要单独指定架构。因为模型本身可以包含任意代码,所以模型本身难以序列化。**因此,为了恢复模型,我们需要用代码生成架构,然后从磁盘加载参数。下面以多层感知机为例。

python 复制代码
class MLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.hidden = nn.Linear(20, 256)
        self.output = nn.Linear(256, 10)

    def forward(self, x):
        return self.output(F.relu(self.hidden(x)))

net = MLP()
X = torch.randn(size=(2, 20))
Y = net(X)

注意:这里不能用 net[0].state_dict() 来访问 MLP 隐藏层的参数,因为 net 是 MLP 类的一个实例,而不是一个包含多个子模块的 nn.Sequential 容器。因此,无法使用索引运算符 [] 来访问 net 对象的子模块。

如果想获取 hidden 层的状态字典,你可以使用 state_dict() 方法直接在 net 对象上调用,如下所示:

python 复制代码
print(net.hidden.state_dict())

同样也适用于ouput层:

python 复制代码
print(net.output.state_dict())

请注意,这里使用的是 net.hidden 和 net.ouput,而不是 net[0]。

接下来,我们将模型的参数存储在一个叫做"mlp.params"的文件中,.state_dict()的用法可以参考文章Pytorch神经网络的参数管理

python 复制代码
torch.save(net.state_dict(), 'mlp.params')

为了恢复模型,我们实例化了原始多层感知机模型的一个备份。这里我们不需要随机初始化模型参数,而是直接读取文件中存储的参数。

python 复制代码
clone = MLP()
clone.load_state_dict(torch.load('mlp.params'))
print(clone.eval())
python 复制代码
MLP(
  (hidden): Linear(in_features=20, out_features=256, bias=True)
  (output): Linear(in_features=256, out_features=10, bias=True)
)

由于两个实例具有相同的模型参数,在输入相同的`X`时,两个实例的计算结果应该相同。让我们来验证一下。

python 复制代码
Y_clone = clone(X)
Y_clone == Y
python 复制代码
tensor([[True, True, True, True, True, True, True, True, True, True],
        [True, True, True, True, True, True, True, True, True, True]])
相关推荐
傻啦嘿哟几秒前
Python爬虫进阶:反爬机制突破与数据存储实战指南
开发语言·爬虫·python
八月瓜科技2 分钟前
工业和信息化部国际经济技术合作中心第五党支部与八月瓜科技党支部开展主题党日活动暨联学联建活动
大数据·人工智能·科技·深度学习·机器人·娱乐
2301_764441332 分钟前
基于Streamlit构建的风水命理计算器
开发语言·python
阿杰学AI4 分钟前
AI核心知识65——大语言模型之Vibe Coding (简洁且通俗易懂版)
人工智能·ai·语言模型·aigc·ai编程·vibe coding·ai coding
@Mr Wang4 分钟前
云服务器之使用jupyter运行ipynb文件
服务器·python·jupyter·notebook
阿杰学AI4 分钟前
AI核心知识64——大语言模型之RLVR (简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·rlvr·基于可验证奖励的强化学习
DisonTangor5 分钟前
【腾讯拥抱开源】HY-World 1.5:具有实时延迟与几何一致性的交互式世界建模系统框架
人工智能·计算机视觉·开源·aigc
Python私教5 分钟前
Jupyter是什么?如何安装使用?
ide·python·jupyter
胡伯来了6 分钟前
08 Transformers - 微调
人工智能·深度学习·机器学习·transformer·transformers
Salt_072810 分钟前
DAY 42 图像数据与显存
人工智能·python·机器学习