微软近日推出了Phi-2,这是一款小型语言模型,但其性能却十分强大

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行! 订阅:https://rengongzhineng.io/

来这里看看: https://huggingface.co/microsoft/phi-2

当我们谈论与生成性人工智能(AI)相关的语言模型时,我们通常首先想到的是大型语言模型(LLM),这些模型驱动了大多数流行的聊天机器人,例如ChatGPT、Bard和Copilot。然而,微软的新型语言模型Phi-2展示了小型语言模型(SLM)在生成性AI领域也有巨大的潜力。

微软于周三发布了Phi-2,这是一款能够进行常识推理和语言理解的小型语言模型,现已在Azure AI Studio模型目录中提供。尽管Phi-2被称为"小型",但它在模型中包含了27亿参数,远超过Phi-1.5的13亿参数。Phi-2在不到130亿参数的语言模型中展现了"最先进的性能",甚至在复杂基准测试中超越了规模大25倍的模型。Phi-2在多个不同的基准测试中超越了包括Meta的Llama-2、Mistral以及谷歌的Gemini Nano 2在内的模型,Gemini Nano 2是谷歌最强大LLM的最小版本。

Phi-2的性能结果与微软开发具有突破性能力和与大规模模型相当性能的SLM的目标一致。

微软在训练Phi-2时非常挑剔地选择了数据。公司首先使用了所谓的"教科书质量"数据。微软随后通过添加精心挑选的网络数据来增强语言模型数据库,这些数据在教育价值和内容质量上经过了筛选。

那么,为什么微软专注于SLM?

SLM是LLM的一种成本效益较高的替代品。在不需要LLM的强大能力来完成任务时,较小的模型也很有用。

此外,运行SLM所需的计算能力远低于LLM。这种降低的要求意味着用户不必投资昂贵的GPU来满足他们的数据处理需求。

相关推荐
CM莫问3 小时前
<论文>(微软)避免推荐域外物品:基于LLM的受限生成式推荐
人工智能·算法·大模型·推荐算法·受限生成
康谋自动驾驶4 小时前
康谋分享 | 自动驾驶仿真进入“标准时代”:aiSim全面对接ASAM OpenX
人工智能·科技·算法·机器学习·自动驾驶·汽车
深蓝学院5 小时前
密西根大学新作——LightEMMA:自动驾驶中轻量级端到端多模态模型
人工智能·机器学习·自动驾驶
归去_来兮5 小时前
人工神经网络(ANN)模型
人工智能·机器学习·人工神经网络
2201_754918415 小时前
深入理解卷积神经网络:从基础原理到实战应用
人工智能·神经网络·cnn
强盛小灵通专卖员5 小时前
DL00219-基于深度学习的水稻病害检测系统含源码
人工智能·深度学习·水稻病害
Luke Ewin6 小时前
CentOS7.9部署FunASR实时语音识别接口 | 部署商用级别实时语音识别接口FunASR
人工智能·语音识别·实时语音识别·商用级别实时语音识别
Joern-Lee6 小时前
初探机器学习与深度学习
人工智能·深度学习·机器学习
云卓SKYDROID6 小时前
无人机数据处理与特征提取技术分析!
人工智能·科技·无人机·科普·云卓科技
R²AIN SUITE6 小时前
金融合规革命:R²AIN SUITE 如何重塑银行业务智能
大数据·人工智能