导行电磁波从纵向场分量求其他方向分量的矩阵表示

导行电磁波从纵向场分量求解其他方向分量的矩阵表示

导行电磁波传播的特点

电磁波在均匀、线性、各向同性的空间中沿着 z z z轴传播,可用分离变量法将时间轴、 z z z轴与 x , y x,y x,y轴分离,电磁波的形式可表示为:
E ⃗ = E ⃗ ( x , y ) e − γ z e j ω t H ⃗ = H ⃗ ( x , y ) e − γ z e j ω t \begin{align} \vec E&=\vec E(x,y) \textrm e^{-\gamma z} \textrm e^{j\omega t}\\ \vec H&=\vec H(x,y) \textrm e^{-\gamma z} \textrm e^{j\omega t}\\ \end{align} E H =E (x,y)e−γzejωt=H (x,y)e−γzejωt

纵向场分量的求解导行电磁波的电场和磁场

对于这种波的求解,可以先求出电场、磁场在 z z z轴的分量,然后根据,然后再根据麦克斯韦方程组求出电磁场在 x , y x,y x,y, 由导行电磁波的数学表达式(1), (2)可知, ∂ ∂ z H x = − γ H x \frac{\partial}{\partial z}H_x=-\gamma H_x ∂z∂Hx=−γHx, ∂ ∂ z H y = − γ H y \frac{\partial}{\partial z}H_y=-\gamma H_y ∂z∂Hy=−γHy, ∂ ∂ z E x = − γ E x \frac{\partial}{\partial z}E_x=-\gamma E_x ∂z∂Ex=−γEx, ∂ ∂ z E y = − γ E y \frac{\partial}{\partial z}E_y=-\gamma E_y ∂z∂Ey=−γEy.

从纵向场分量求解其他方向电场和磁场分量及其矩阵表示

麦克斯韦方程组可表示如下:
∇ × H ⃗ = ∂ D ⃗ ∂ t + J ⃗ ∇ × E ⃗ = − ∂ B ⃗ ∂ t ∇ ⋅ D ⃗ = ρ ∇ ⋅ B ⃗ = 0 \begin{align} \nabla \times \vec H &= \frac{\partial \vec D}{\partial t}+\vec J\\ \nabla \times \vec E &= - \frac{\partial \vec B}{\partial t}\\ \nabla \cdotp \vec D &= \rho\\ \nabla \cdotp \vec B &= 0 \end{align} ∇×H ∇×E ∇⋅D ∇⋅B =∂t∂D +J =−∂t∂B =ρ=0

如果已知 H z , E z H_z, E_z Hz,Ez并且知道导行电磁波的形式如公式(1)和(2)所示,并认为传播空间中不存在电荷与电流, J ⃗ = 0 , ρ = 0 \vec J=0, \rho=0 J =0,ρ=0,方程式(3)-(4)可表示为:

∇ × H ⃗ = [ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z H x H y H z ] = j ω ε E ⃗ ∇ × E ⃗ = [ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z E x E y E z ] = − j ω μ H ⃗ \begin{align} \nabla \times \vec H &=\begin{bmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ H_x &H_y&H_z \end{bmatrix} = j\omega \varepsilon \vec E\\ \nabla \times \vec E &= \begin{bmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ E_x &E_y&E_z \end{bmatrix} =- j\omega \mu \vec H\\ \end{align} ∇×H ∇×E = i∂x∂Hxj∂y∂Hyk∂z∂Hz =jωεE = i∂x∂Exj∂y∂Eyk∂z∂Ez =−jωμH

将(7)式 x x x 分量展开得到(9),将(8)式 y y y 分量展开得到(10)
∂ ∂ y H z + γ H y = j ω ε E x ∂ ∂ x E z + γ E x = j ω μ H y \begin{align} \frac{\partial}{\partial y}H_z+\gamma H_y &=j\omega \varepsilon E_x\\ \frac{\partial}{\partial x}E_z+\gamma E_x &=j\omega \mu H_y\\ \end{align} ∂y∂Hz+γHy∂x∂Ez+γEx=jωεEx=jωμHy

根据(9)和(10),得到用 H z , E z H_z, E_z Hz,Ez表示的 H y , E x H_y, E_x Hy,Ex:

[ E x H y ] = − 1 k c 2 [ γ j ω μ j ω ε γ ] [ ∂ ∂ x 0 0 ∂ ∂ y ] [ E z H z ] \begin{align} \begin{bmatrix} E_x \\ H_y \end{bmatrix} &= -\frac{1}{k_c^2} \begin{bmatrix} \gamma & j\omega\mu \\ j\omega\varepsilon & \gamma \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial x} & 0 \\ 0 & \frac{\partial}{\partial y} \end{bmatrix} \begin{bmatrix} E_z \\ H_z \end{bmatrix} \\ \end{align} [ExHy]=−kc21[γjωεjωμγ][∂x∂00∂y∂][EzHz]

将(7)式 y y y 分量展开得到(12),将(8)式 x x x 分量展开得到(13)
− ∂ ∂ x H z − γ H x = j ω ε E y ∂ ∂ y E z + γ E x = j ω μ H x \begin{align} -\frac{\partial}{\partial x}H_z-\gamma H_x &=j\omega \varepsilon E_y\\ \frac{\partial}{\partial y}E_z+\gamma E_x &=j\omega \mu H_x\\ \end{align} −∂x∂Hz−γHx∂y∂Ez+γEx=jωεEy=jωμHx

根据(12)和(13),得到用 H z , E z H_z, E_z Hz,Ez表示的 H x , E y H_x, E_y Hx,Ey:

[ E y H x ] = − 1 k c 2 [ γ − j ω μ − j ω ε γ ] [ ∂ ∂ y 0 0 ∂ ∂ x ] [ E z H z ] \begin{align} \begin{bmatrix} E_y \\ H_x \end{bmatrix} &= -\frac{1}{k_c^2} \begin{bmatrix} \gamma & -j\omega\mu \\ -j\omega\varepsilon & \gamma \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial y} & 0 \\ 0 & \frac{\partial}{\partial x} \end{bmatrix} \begin{bmatrix} E_z \\ H_z \end{bmatrix} \\ \end{align} [EyHx]=−kc21[γ−jωε−jωμγ][∂y∂00∂x∂][EzHz]

相关推荐
幻风_huanfeng1 小时前
人工智能之数学基础:线性代数在人工智能中的地位
人工智能·深度学习·神经网络·线性代数·机器学习·自然语言处理
爱敲代码的憨仔5 小时前
《线性代数的本质》
线性代数·算法·决策树
2402_871321951 天前
MATLAB方程组
gpt·学习·线性代数·算法·matlab
Angindem1 天前
子矩阵的和(矩阵前缀和)
线性代数·矩阵
2403_875180952 天前
短视频矩阵系统是什么?有什么功能?
线性代数·矩阵
取个名字真难呐2 天前
AB矩阵秩1乘法,列乘以行
python·线性代数·矩阵
2403_875180952 天前
短视频矩阵矩阵,矩阵号策略
线性代数·矩阵
2403_875180952 天前
短视频矩阵系统:智能批量剪辑、账号管理新纪元!
线性代数·矩阵
埃菲尔铁塔_CV算法2 天前
矩阵论在深度学习中的应用
深度学习·线性代数·矩阵
美式小田3 天前
ADS学习笔记 5. 微带天线设计
笔记·学习·射频工程