大模型系列之模型参数冻结

第一、冻结的参数设置成False

比如说仅训练embedding层参数

python 复制代码
for name, param in model.named_parameters():
    if "model.embed_tokens" not in name:
        param.requires_grad = False

第二、优化器过滤False的参数

python 复制代码
optimizer = AdamW(filter(lambda p: p.requires_grad, model.parameters()))

第三、案例(以mistral为例,仅优化最后几层)

1. 加载模型

python 复制代码
model = MistralForSequenceClassification.from_pretrained(args.model_dir, num_labels=num_labels).half()

2. 默认是优化所有参数,如下所示:

python 复制代码
for name, p in model.named_parameters():
	print(name, p.requires_grad)

输出:

model.embed_tokens.weight True

model.layers.0.self_attn.q_proj.weight True

model.layers.0.self_attn.k_proj.weight True

model.layers.0.self_attn.v_proj.weight True

model.layers.0.self_attn.o_proj.weight True

model.layers.0.mlp.gate_proj.weight True

model.layers.0.mlp.up_proj.weight True

model.layers.0.mlp.down_proj.weight True

model.layers.0.input_layernorm.weight True

model.layers.0.post_attention_layernorm.weight True

model.layers.1.self_attn.q_proj.weight True

model.layers.1.self_attn.k_proj.weight True

model.layers.1.self_attn.v_proj.weight True

model.layers.1.self_attn.o_proj.weight True

model.layers.1.mlp.gate_proj.weight True

model.layers.1.mlp.up_proj.weight True

model.layers.1.mlp.down_proj.weight True

model.layers.1.input_layernorm.weight True

model.layers.1.post_attention_layernorm.weight True

model.layers.2.self_attn.q_proj.weight True

model.layers.2.self_attn.k_proj.weight True

model.layers.2.self_attn.v_proj.weight True

model.layers.2.self_attn.o_proj.weight True

model.layers.2.mlp.gate_proj.weight True

model.layers.2.mlp.up_proj.weight True

model.layers.2.mlp.down_proj.weight True

model.layers.2.input_layernorm.weight True

model.layers.2.post_attention_layernorm.weight True

model.layers.3.self_attn.q_proj.weight True

model.layers.3.self_attn.k_proj.weight True

model.layers.3.self_attn.v_proj.weight True

model.layers.3.self_attn.o_proj.weight True

model.layers.3.mlp.gate_proj.weight True

model.layers.3.mlp.up_proj.weight True

model.layers.3.mlp.down_proj.weight True

model.layers.3.input_layernorm.weight True

model.layers.3.post_attention_layernorm.weight True

model.layers.4.self_attn.q_proj.weight True

model.layers.4.self_attn.k_proj.weight True

model.layers.4.self_attn.v_proj.weight True

model.layers.4.self_attn.o_proj.weight True

model.layers.4.mlp.gate_proj.weight True

model.layers.4.mlp.up_proj.weight True

model.layers.4.mlp.down_proj.weight True

model.layers.4.input_layernorm.weight True

model.layers.4.post_attention_layernorm.weight True

model.layers.5.self_attn.q_proj.weight True

model.layers.5.self_attn.k_proj.weight True

model.layers.5.self_attn.v_proj.weight True

model.layers.5.self_attn.o_proj.weight True

model.layers.5.mlp.gate_proj.weight True

model.layers.5.mlp.up_proj.weight True

model.layers.5.mlp.down_proj.weight True

model.layers.5.input_layernorm.weight True

model.layers.5.post_attention_layernorm.weight True

model.layers.6.self_attn.q_proj.weight True

model.layers.6.self_attn.k_proj.weight True

model.layers.6.self_attn.v_proj.weight True

model.layers.6.self_attn.o_proj.weight True

model.layers.6.mlp.gate_proj.weight True

model.layers.6.mlp.up_proj.weight True

model.layers.6.mlp.down_proj.weight True

model.layers.6.input_layernorm.weight True

model.layers.6.post_attention_layernorm.weight True

model.layers.7.self_attn.q_proj.weight True

model.layers.7.self_attn.k_proj.weight True

model.layers.7.self_attn.v_proj.weight True

model.layers.7.self_attn.o_proj.weight True

model.layers.7.mlp.gate_proj.weight True

model.layers.7.mlp.up_proj.weight True

model.layers.7.mlp.down_proj.weight True

model.layers.7.input_layernorm.weight True

model.layers.7.post_attention_layernorm.weight True

model.layers.8.self_attn.q_proj.weight True

model.layers.8.self_attn.k_proj.weight True

model.layers.8.self_attn.v_proj.weight True

model.layers.8.self_attn.o_proj.weight True

model.layers.8.mlp.gate_proj.weight True

model.layers.8.mlp.up_proj.weight True

model.layers.8.mlp.down_proj.weight True

model.layers.8.input_layernorm.weight True

model.layers.8.post_attention_layernorm.weight True

model.layers.9.self_attn.q_proj.weight True

model.layers.9.self_attn.k_proj.weight True

model.layers.9.self_attn.v_proj.weight True

model.layers.9.self_attn.o_proj.weight True

model.layers.9.mlp.gate_proj.weight True

model.layers.9.mlp.up_proj.weight True

model.layers.9.mlp.down_proj.weight True

model.layers.9.input_layernorm.weight True

model.layers.9.post_attention_layernorm.weight True

model.layers.10.self_attn.q_proj.weight True

model.layers.10.self_attn.k_proj.weight True

model.layers.10.self_attn.v_proj.weight True

model.layers.10.self_attn.o_proj.weight True

model.layers.10.mlp.gate_proj.weight True

model.layers.10.mlp.up_proj.weight True

model.layers.10.mlp.down_proj.weight True

model.layers.10.input_layernorm.weight True

model.layers.10.post_attention_layernorm.weight True

model.layers.11.self_attn.q_proj.weight True

model.layers.11.self_attn.k_proj.weight True

model.layers.11.self_attn.v_proj.weight True

model.layers.11.self_attn.o_proj.weight True

model.layers.11.mlp.gate_proj.weight True

model.layers.11.mlp.up_proj.weight True

model.layers.11.mlp.down_proj.weight True

model.layers.11.input_layernorm.weight True

model.layers.11.post_attention_layernorm.weight True

model.layers.12.self_attn.q_proj.weight True

model.layers.12.self_attn.k_proj.weight True

model.layers.12.self_attn.v_proj.weight True

model.layers.12.self_attn.o_proj.weight True

model.layers.12.mlp.gate_proj.weight True

model.layers.12.mlp.up_proj.weight True

model.layers.12.mlp.down_proj.weight True

model.layers.12.input_layernorm.weight True

model.layers.12.post_attention_layernorm.weight True

model.layers.13.self_attn.q_proj.weight True

model.layers.13.self_attn.k_proj.weight True

model.layers.13.self_attn.v_proj.weight True

model.layers.13.self_attn.o_proj.weight True

model.layers.13.mlp.gate_proj.weight True

model.layers.13.mlp.up_proj.weight True

model.layers.13.mlp.down_proj.weight True

model.layers.13.input_layernorm.weight True

model.layers.13.post_attention_layernorm.weight True

model.layers.14.self_attn.q_proj.weight True

model.layers.14.self_attn.k_proj.weight True

model.layers.14.self_attn.v_proj.weight True

model.layers.14.self_attn.o_proj.weight True

model.layers.14.mlp.gate_proj.weight True

model.layers.14.mlp.up_proj.weight True

model.layers.14.mlp.down_proj.weight True

model.layers.14.input_layernorm.weight True

model.layers.14.post_attention_layernorm.weight True

model.layers.15.self_attn.q_proj.weight True

model.layers.15.self_attn.k_proj.weight True

model.layers.15.self_attn.v_proj.weight True

model.layers.15.self_attn.o_proj.weight True

model.layers.15.mlp.gate_proj.weight True

model.layers.15.mlp.up_proj.weight True

model.layers.15.mlp.down_proj.weight True

model.layers.15.input_layernorm.weight True

model.layers.15.post_attention_layernorm.weight True

model.layers.16.self_attn.q_proj.weight True

model.layers.16.self_attn.k_proj.weight True

model.layers.16.self_attn.v_proj.weight True

model.layers.16.self_attn.o_proj.weight True

model.layers.16.mlp.gate_proj.weight True

model.layers.16.mlp.up_proj.weight True

model.layers.16.mlp.down_proj.weight True

model.layers.16.input_layernorm.weight True

model.layers.16.post_attention_layernorm.weight True

model.layers.17.self_attn.q_proj.weight True

model.layers.17.self_attn.k_proj.weight True

model.layers.17.self_attn.v_proj.weight True

model.layers.17.self_attn.o_proj.weight True

model.layers.17.mlp.gate_proj.weight True

model.layers.17.mlp.up_proj.weight True

model.layers.17.mlp.down_proj.weight True

model.layers.17.input_layernorm.weight True

model.layers.17.post_attention_layernorm.weight True

model.layers.18.self_attn.q_proj.weight True

model.layers.18.self_attn.k_proj.weight True

model.layers.18.self_attn.v_proj.weight True

model.layers.18.self_attn.o_proj.weight True

model.layers.18.mlp.gate_proj.weight True

model.layers.18.mlp.up_proj.weight True

model.layers.18.mlp.down_proj.weight True

model.layers.18.input_layernorm.weight True

model.layers.18.post_attention_layernorm.weight True

model.layers.19.self_attn.q_proj.weight True

model.layers.19.self_attn.k_proj.weight True

model.layers.19.self_attn.v_proj.weight True

model.layers.19.self_attn.o_proj.weight True

model.layers.19.mlp.gate_proj.weight True

model.layers.19.mlp.up_proj.weight True

model.layers.19.mlp.down_proj.weight True

model.layers.19.input_layernorm.weight True

model.layers.19.post_attention_layernorm.weight True

model.layers.20.self_attn.q_proj.weight True

model.layers.20.self_attn.k_proj.weight True

model.layers.20.self_attn.v_proj.weight True

model.layers.20.self_attn.o_proj.weight True

model.layers.20.mlp.gate_proj.weight True

model.layers.20.mlp.up_proj.weight True

model.layers.20.mlp.down_proj.weight True

model.layers.20.input_layernorm.weight True

model.layers.20.post_attention_layernorm.weight True

model.layers.21.self_attn.q_proj.weight True

model.layers.21.self_attn.k_proj.weight True

model.layers.21.self_attn.v_proj.weight True

model.layers.21.self_attn.o_proj.weight True

model.layers.21.mlp.gate_proj.weight True

model.layers.21.mlp.up_proj.weight True

model.layers.21.mlp.down_proj.weight True

model.layers.21.input_layernorm.weight True

model.layers.21.post_attention_layernorm.weight True

model.layers.22.self_attn.q_proj.weight True

model.layers.22.self_attn.k_proj.weight True

model.layers.22.self_attn.v_proj.weight True

model.layers.22.self_attn.o_proj.weight True

model.layers.22.mlp.gate_proj.weight True

model.layers.22.mlp.up_proj.weight True

model.layers.22.mlp.down_proj.weight True

model.layers.22.input_layernorm.weight True

model.layers.22.post_attention_layernorm.weight True

model.layers.23.self_attn.q_proj.weight True

model.layers.23.self_attn.k_proj.weight True

model.layers.23.self_attn.v_proj.weight True

model.layers.23.self_attn.o_proj.weight True

model.layers.23.mlp.gate_proj.weight True

model.layers.23.mlp.up_proj.weight True

model.layers.23.mlp.down_proj.weight True

model.layers.23.input_layernorm.weight True

model.layers.23.post_attention_layernorm.weight True

model.layers.24.self_attn.q_proj.weight True

model.layers.24.self_attn.k_proj.weight True

model.layers.24.self_attn.v_proj.weight True

model.layers.24.self_attn.o_proj.weight True

model.layers.24.mlp.gate_proj.weight True

model.layers.24.mlp.up_proj.weight True

model.layers.24.mlp.down_proj.weight True

model.layers.24.input_layernorm.weight True

model.layers.24.post_attention_layernorm.weight True

model.layers.25.self_attn.q_proj.weight True

model.layers.25.self_attn.k_proj.weight True

model.layers.25.self_attn.v_proj.weight True

model.layers.25.self_attn.o_proj.weight True

model.layers.25.mlp.gate_proj.weight True

model.layers.25.mlp.up_proj.weight True

model.layers.25.mlp.down_proj.weight True

model.layers.25.input_layernorm.weight True

model.layers.25.post_attention_layernorm.weight True

model.layers.26.self_attn.q_proj.weight True

model.layers.26.self_attn.k_proj.weight True

model.layers.26.self_attn.v_proj.weight True

model.layers.26.self_attn.o_proj.weight True

model.layers.26.mlp.gate_proj.weight True

model.layers.26.mlp.up_proj.weight True

model.layers.26.mlp.down_proj.weight True

model.layers.26.input_layernorm.weight True

model.layers.26.post_attention_layernorm.weight True

model.layers.27.self_attn.q_proj.weight True

model.layers.27.self_attn.k_proj.weight True

model.layers.27.self_attn.v_proj.weight True

model.layers.27.self_attn.o_proj.weight True

model.layers.27.mlp.gate_proj.weight True

model.layers.27.mlp.up_proj.weight True

model.layers.27.mlp.down_proj.weight True

model.layers.27.input_layernorm.weight True

model.layers.27.post_attention_layernorm.weight True

model.layers.28.self_attn.q_proj.weight True

model.layers.28.self_attn.k_proj.weight True

model.layers.28.self_attn.v_proj.weight True

model.layers.28.self_attn.o_proj.weight True

model.layers.28.mlp.gate_proj.weight True

model.layers.28.mlp.up_proj.weight True

model.layers.28.mlp.down_proj.weight True

model.layers.28.input_layernorm.weight True

model.layers.28.post_attention_layernorm.weight True

model.layers.29.self_attn.q_proj.weight True

model.layers.29.self_attn.k_proj.weight True

model.layers.29.self_attn.v_proj.weight True

model.layers.29.self_attn.o_proj.weight True

model.layers.29.mlp.gate_proj.weight True

model.layers.29.mlp.up_proj.weight True

model.layers.29.mlp.down_proj.weight True

model.layers.29.input_layernorm.weight True

model.layers.29.post_attention_layernorm.weight True

model.layers.30.self_attn.q_proj.weight True

model.layers.30.self_attn.k_proj.weight True

model.layers.30.self_attn.v_proj.weight True

model.layers.30.self_attn.o_proj.weight True

model.layers.30.mlp.gate_proj.weight True

model.layers.30.mlp.up_proj.weight True

model.layers.30.mlp.down_proj.weight True

model.layers.30.input_layernorm.weight True

model.layers.30.post_attention_layernorm.weight True

model.layers.31.self_attn.q_proj.weight True

model.layers.31.self_attn.k_proj.weight True

model.layers.31.self_attn.v_proj.weight True

model.layers.31.self_attn.o_proj.weight True

model.layers.31.mlp.gate_proj.weight True

model.layers.31.mlp.up_proj.weight True

model.layers.31.mlp.down_proj.weight True

model.layers.31.input_layernorm.weight True

model.layers.31.post_attention_layernorm.weight True

model.norm.weight True

score.weight True

3. 优化最后几层:

python 复制代码
for name, param in model.named_parameters():
    param.requires_grad = False
    for k in [31, 30, 29, 'score', 'model.norm.weight']:
        if str(k) in name:
            param.requires_grad = True
            print(name)

optimizer = AdamW(filter(lambda p: p.requires_grad, model.parameters()), lr=args.learning_rate)

输出:

model.layers.29.self_attn.q_proj.weight

model.layers.29.self_attn.k_proj.weight

model.layers.29.self_attn.v_proj.weight

model.layers.29.self_attn.o_proj.weight

model.layers.29.mlp.gate_proj.weight

model.layers.29.mlp.up_proj.weight

model.layers.29.mlp.down_proj.weight

model.layers.29.input_layernorm.weight

model.layers.29.post_attention_layernorm.weight

model.layers.30.self_attn.q_proj.weight

model.layers.30.self_attn.k_proj.weight

model.layers.30.self_attn.v_proj.weight

model.layers.30.self_attn.o_proj.weight

model.layers.30.mlp.gate_proj.weight

model.layers.30.mlp.up_proj.weight

model.layers.30.mlp.down_proj.weight

model.layers.30.input_layernorm.weight

model.layers.30.post_attention_layernorm.weight

model.layers.31.self_attn.q_proj.weight

model.layers.31.self_attn.k_proj.weight

model.layers.31.self_attn.v_proj.weight

model.layers.31.self_attn.o_proj.weight

model.layers.31.mlp.gate_proj.weight

model.layers.31.mlp.up_proj.weight

model.layers.31.mlp.down_proj.weight

model.layers.31.input_layernorm.weight

model.layers.31.post_attention_layernorm.weight

model.norm.weight

score.weight

相关推荐
锋行天下15 小时前
公司内网部署大模型的探索之路
前端·人工智能·后端
背心2块钱包邮17 小时前
第7节——积分技巧(Integration Techniques)-代换积分法
人工智能·python·深度学习·matplotlib
无心水17 小时前
【分布式利器:大厂技术】4、字节跳动高性能架构:Kitex+Hertz+BytePS,实时流与AI的极致优化
人工智能·分布式·架构·kitex·分布式利器·字节跳动分布式·byteps
阿正的梦工坊17 小时前
DreamGym:通过经验合成实现代理学习的可扩展化
人工智能·算法·大模型·llm
PixelMind18 小时前
【超分辨率专题】FlashVSR:单步Diffusion的再次提速,实时视频超分不是梦!
深度学习·音视频·超分辨率·vsr
湘-枫叶情缘18 小时前
人脑生物芯片作为“数字修炼世界”终极载体的技术前景、伦理挑战与实现路径
人工智能
噜~噜~噜~18 小时前
偏导数和全导数的个人理解
深度学习·偏导数·梯度·全导数
Aaron158818 小时前
侦察、测向、识别、干扰一体化平台系统技术实现
人工智能·fpga开发·硬件架构·边缘计算·信息与通信·射频工程·基带工程
维维180-3121-145518 小时前
作物模型的未来:DSSAT与机器学习、遥感及多尺度模拟的融合
人工智能·生态学·农业遥感·作物模型·地理学·农学
lx74160269818 小时前
change-detection关于llm方向的任务与优化
深度学习