大数据学习(29)-spark on yarn底层原理

&&大数据学习&&

🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门

💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞


Spark on Yarn的底层原理以下几个方面:

  1. 资源申请与调度:Spark通过YARN的接口向ResourceManager申请资源。ResourceManager根据集群的状态和应用程序的需求,为Spark分配相应的资源。Spark接收到资源后,通过YARN的接口与NodeManager通信,请求启动任务。
  2. 任务分配与执行:Spark ApplicationMaster启动后,会向ResourceManager注册并获取任务。然后,ApplicationMaster会根据任务的依赖关系和执行顺序,将任务分配给各个NodeManager执行。NodeManager负责启动和监控任务,并将任务的执行状态和结果报告给ApplicationMaster。
  3. 容错机制:YARN提供了容错机制,当某个NodeManager出现故障时,ResourceManager会重新为Spark分配资源,确保任务能够正常运行。
  4. 资源回收:当Spark应用程序完成后,ApplicationMaster会向ResourceManager注销,并释放资源。ResourceManager会将资源回收并重新分配给其他应用程序使用。

总的来说,Spark on Yarn的底层原理是通过YARN的资源管理和调度机制,为Spark应用程序提供资源分配、任务执行和容错处理等功能。

相关推荐
Lx3521 小时前
复杂MapReduce作业设计:多阶段处理的最佳实践
大数据·hadoop
武子康4 小时前
大数据-100 Spark DStream 转换操作全面总结:map、reduceByKey 到 transform 的实战案例
大数据·后端·spark
expect7g5 小时前
Flink KeySelector
大数据·后端·flink
阿里云大数据AI技术21 小时前
StarRocks 助力数禾科技构建实时数仓:从数据孤岛到智能决策
大数据
Lx3521 天前
Hadoop数据处理优化:减少Shuffle阶段的性能损耗
大数据·hadoop
武子康1 天前
大数据-99 Spark Streaming 数据源全面总结:原理、应用 文件流、Socket、RDD队列流
大数据·后端·spark
阿里云大数据AI技术2 天前
大数据公有云市场第一,阿里云占比47%!
大数据
Lx3522 天前
Hadoop容错机制深度解析:保障作业稳定运行
大数据·hadoop
2303_Alpha2 天前
SpringBoot
笔记·学习
萘柰奈2 天前
Unity学习----【进阶】TextMeshPro学习(三)--进阶知识点(TMP基础设置,材质球相关,两个辅助工具类)
学习·unity