pytorch 踩坑

pytorch 踩坑

在pytorch中,如果你定义了没用的组件,同样也会影响你的模型(我也不知道从哪里影响的),看一个例子

python 复制代码
    def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
        norm_layer = self._norm_layer
        #downsample = None
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
        # if stride != 1 or self.inplanes != planes:
        #     downsample = layer.SeqToANNContainer(
        #             nn.Conv2d(self.inplanes, planes, kernel_size=1, stride=stride),
        #             norm_layer(planes),
        #         )

        layers = []
        layers.append(block(self.inplanes, planes, stride
                            ))
        self.inplanes = planes 
        for _ in range(1, blocks):
            layers.append(block(self.inplanes, planes
                                ))

        return nn.Sequential(*layers)

这是传统的一个_make_layer,可以看到我把其中的downsample给注释掉了,他其实是个没用的组件,我之前也没管它,我没注释前,第一个epoch

注释后

就是他其实是不参与整体模型的,但是就是会影响,我估计是影响整体模型的初始化啥的了?说不定到最后等模型收敛了结果会是差不多的。。这里我就不验证了,如果有大神看到的话可以验证一下告诉我结果,感谢!!

动机是因为,我自己写了个pytorch网络结构,然后我想写成大家都在写的这种格式,就是都封装起来,结果我发现模型结构一样,为什么两个跑的结果不一样呢,初始化和随机种子我都设置了,于是我就想去找到底哪里有问题,后面就一步步的发现了这个问题,怎么说呢,虽然最后两边的结果还是有差异,但是不多,可能还是因为一些组件的定义、组件的顺序、以及其他很小的因素都会有影响,因此在这里劝大家代码还是要写规范,这样才和别人的baseline有的比~

我一天都在调这个bug,我就在想,两个同样结构的网络,我设置了同样的随机种子和初始化,怎么会结果不同呢?

经过我一天的实验发现,你网络层定义的位置,是否创建这个网络层,都会对结果有影响,例如,如果我的downsample是通过函数传递给basicblock和我直接在函数里定义downsample,那么这样跑出来的结果还是不一样,经过两个downsample定义的方式是一样的

最后希望大家不要想我一样硬钻牛角尖,因为这样其实到头来发现不是模型的问题而是本身pytorch的问题感觉有些浪费时间,但又希望大家可以适当的钻牛角尖,毕竟一切的结果都来源于大家的坚持

相关推荐
清弦墨客11 分钟前
【蓝桥杯】43697.机器人塔
python·蓝桥杯·程序算法
云空43 分钟前
《DeepSeek 网页/API 性能异常(DeepSeek Web/API Degraded Performance):网络安全日志》
运维·人工智能·web安全·网络安全·开源·网络攻击模型·安全威胁分析
AIGC大时代44 分钟前
对比DeepSeek、ChatGPT和Kimi的学术写作关键词提取能力
论文阅读·人工智能·chatgpt·数据分析·prompt
山晨啊82 小时前
2025年美赛B题-结合Logistic阻滞增长模型和SIR传染病模型研究旅游可持续性-成品论文
人工智能·机器学习
RZer2 小时前
Hypium+python鸿蒙原生自动化安装配置
python·自动化·harmonyos
一水鉴天2 小时前
为AI聊天工具添加一个知识系统 之77 详细设计之18 正则表达式 之5
人工智能·正则表达式
davenian3 小时前
DeepSeek-R1 论文. Reinforcement Learning 通过强化学习激励大型语言模型的推理能力
人工智能·深度学习·语言模型·deepseek
X.AI6663 小时前
【大模型LLM面试合集】大语言模型架构_llama系列模型
人工智能·语言模型·llama
CM莫问3 小时前
什么是门控循环单元?
人工智能·pytorch·python·rnn·深度学习·算法·gru
饮马长城窟3 小时前
Paddle和pytorch不可以同时引用
人工智能·pytorch·paddle