TensorFlow层次结构中的三种计算图

三种计算图

所谓计算图,计算图由节点(nodes)和线(edges)组成。节点表示操作符 Operator,或者称之为算子,线表示计算间的依赖。实线表示有数据传递依赖,传递的数据即张量。虚线通常可以表示控制依赖,即执行先后顺序。

有三种计算图的构建方式:静态计算图,动态计算图,以及 Autograph。在 TensorFlow1.0 时代,采用的是静态计算图,需要先使用 TensorFlow 的各种算子创建计算图,然后再开启一个会话 Session,显式执行计算图。

而在 TensorFlow2.0 时代,采用的是动态计算图,即每使用一个算子后,该算子会被动态加入到隐含的默认计算图中立即执行得到结果,而无需开启 Session。而在 TensorFlow2.0 时代,采用的是动态计算图,即每使用一个算子后,该算子会被动态加入到隐含的默认计算图中立即执行得到结果,而无需开启 Session。

使用动态计算图即 Eager Excution 的好处是方便调试程序,它会让 TensorFlow 代码的表现和 Python 原生代码的表现一样,写起来就像写 numpy 一样,各种日志打印,控制流全部都是可以使用的。使用动态计算图的缺点是运行效率相对会低一些。因为使用动态图会有许多次 Python 进程和 TensorFlow 的 C++进程之间的通信。而静态计算图构建完成之后几乎全部在 TensorFlow 内核上使用 C++ 代码执行,效率更高。此外静态图会对计算步骤进行一定的优化,剪去和结果无关的计算步骤。

如果需要在 TensorFlow2.0 中使用静态图,可以使用@tf.function 装饰器将普通 Python 函数转换成对应的 TensorFlow 计算图构建代码。运行该函数就相当于在 TensorFlow1.0 中用 Session 执行代码。使用 tf.function 构建静态图的方式叫做 Autograph.

静态计算图

在 TensorFlow 1.0 中,使用静态计算图分两步,第一步定义计算图,第二步在会话中执行计算图。

复制代码
复制代码
import tensorflow as tf

#定义计算图
g = tf.Graph()
with g.as_default():
    #placeholder为占位符,执行会话时候指定填充对象
    x = tf.placeholder(name='x', shape=[], dtype=tf.string)
    y = tf.placeholder(name='y', shape=[], dtype=tf.string)
    z = tf.string_join([x,y],name = 'join',separator=' ')

#执行计算图
with tf.Session(graph = g) as sess:
    print(sess.run(fetches = z,feed_dict = {x:"hello",y:"world"}))

TensorFlow2.0 为了确保对老版本 tensorflow 项目的兼容性,在 tf.compat.v1 子模块中保留了对 TensorFlow1.0 那种静态计算图构建风格的支持。

import tensorflow as tf

g = tf.compat.v1.Graph()
with g.as_default():
    x = tf.compat.v1.placeholder(name='x', shape=[], dtype=tf.string)
    y = tf.compat.v1.placeholder(name='y', shape=[], dtype=tf.string)
    z = tf.strings.join([x,y],name = "join",separator = " ")

with tf.compat.v1.Session(graph = g) as sess:
    # fetches的结果非常像一个函数的返回值,而feed_dict中的占位符相当于函数的参数序列。
    result = sess.run(fetches = z,feed_dict = {x:"hello",y:"world"})
    print(result)
复制代码

动态计算图

在 TensorFlow 2.0 中,使用的是动态计算图和 Autograph。在 TensorFlow1.0 中,使用静态计算图分两步,第一步定义计算图,第二步在会话中执行计算图。

动态计算图已经不区分计算图的定义和执行了,而是定义后立即执行。因此称之为 Eager Excution.

复制代码
# 动态计算图在每个算子处都进行构建,构建后立即执行

x = tf.constant("hello")
y = tf.constant("world")
z = tf.strings.join([x,y],separator=" ")

tf.print(z)

# 可以将动态计算图代码的输入和输出关系封装成函数

def strjoin(x,y):
    z =  tf.strings.join([x,y],separator = " ")
    tf.print(z)
    return z

result = strjoin(tf.constant("hello"),tf.constant("world"))
print(result)

签名

动态计算图运行效率相对较低。可以用 @tf.function 装饰器将普通 Python 函数转换成和 TensorFlow1.0 对应的静态计算图构建代码。在 TensorFlow1.0 中,使用计算图分两步,第一步定义计算图,第二步在会话中执行计算图。在 TensorFlow2.0 中,如果采用 Autograph 的方式使用计算图,第一步定义计算图变成了定义函数,第二步执行计算图变成了调用函数。

实践中,我们一般会先用动态计算图调试代码,然后在需要提高性能的地方利用 @tf.function 切换成 Autograph 获得更高的效率。

复制代码
import tensorflow as tf

# 使用autograph构建静态图
@tf.function
def strjoin(x,y):
    z =  tf.strings.join([x,y],separator = " ")
    tf.print(z)
    return z

result = strjoin(tf.constant("hello"),tf.constant("world"))

print(result)

import datetime

# 创建日志
import os
stamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
logdir = os.path.join('data', 'autograph', stamp)

## 在 Python3 下建议使用 pathlib 修正各操作系统的路径
# from pathlib import Path
# stamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
# logdir = str(Path('./data/autograph/' + stamp))

writer = tf.summary.create_file_writer(logdir)

# 开启autograph跟踪
tf.summary.trace_on(graph=True, profiler=True)

# 执行autograph
result = strjoin("hello","world")

# 将计算图信息写入日志
with writer.as_default():
    tf.summary.trace_export(
        name="autograph",
        step=0,
        profiler_outdir=logdir)

然后我们可以启动 TensorBoard 查看 AutoGraph:

# 启动 tensorboard在jupyter中的魔法命令
%load_ext tensorboard

# 启动tensorboard
%tensorboard --logdir ./data/autograph/
复制代码
相关推荐
新智元1 分钟前
Meta没做的,英伟达做了!全新架构吞吐量狂飙6倍,20万亿Token训练
人工智能·openai
新智元1 分钟前
Hinton 预言成真!AI 接管美国一半白领,牛津哈佛扎堆转行做技工
人工智能·openai
aneasystone本尊13 分钟前
学习 Coze Studio 的知识库入库逻辑
人工智能
然我14 分钟前
从 “只会聊天” 到 “能办实事”:OpenAI Function Call 彻底重构 AI 交互逻辑(附完整接入指南)
前端·javascript·人工智能
岁月宁静21 分钟前
软件开发核心流程全景解析 —— 基于 AI 多模态项目实践
前端·人工智能·后端
wangjiaocheng22 分钟前
软件功能分解输入处理输出递归嵌套模型
人工智能
G等你下课23 分钟前
Function call
前端·人工智能
岁月宁静23 分钟前
MCP 协议应用场景 —— Cursor 连接 Master Go AI
前端·vue.js·人工智能
柠檬味拥抱26 分钟前
融合NLU与NLG的AI Agent语言交互机制研究
人工智能
wydaicls29 分钟前
用函数实现方程函数解题
人工智能·算法·机器学习