【BXZ_231228】使用Sklearn Kmeans及RFM对淘宝客户进行分类关怀

复制代码
import random
import string
from datetime import datetime

def generate_random_string(length=3):
    characters = string.ascii_uppercase
    return ''.join(random.choice(characters) for _ in range(length))

def generate_timestamped_string(separator='_'):
    timestamp = datetime.now().strftime('%y%m%d') # %H%M%S
    random_part = generate_random_string(length=3)
    return random_part+separator+timestamp

timestamped_string = generate_timestamped_string()
print('【{0}】'.format(timestamped_string))

【Talk is cheap】

复制代码
import warnings
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文
plt.rcParams['axes.unicode_minus'] = False # 显示负号
warnings.filterwarnings("ignore")
%matplotlib inline

...
Index(['买家会员名', '买家实际支付积分', '买家实际支付金额', '买家应付货款', '买家应付邮费', '买家支付宝账号',
       '买家支付积分', '买家服务费', '买家留言', '修改后的sku', '修改后的收货地址', '分阶段订单信息', '卖家服务费',
       '发票抬头', '含应开票给个人的个人红包', '天猫卡券抵扣', '定金排名', '宝贝总数量', '宝贝标题 ', '宝贝种类 ',
       '店铺Id', '店铺名称', '异常信息', '总金额', '打款商家金额', '支付单号', '支付详情', '收货人姓名',
       '收货地址', '新零售交易类型', '新零售发货门店id', '新零售发货门店名称', '新零售导购门店id', '新零售导购门店名称',
       '是否上传合同照片', '是否上传小票', '是否代付', '是否手机订单', '是否是O2O交易', '物流公司', '物流单号 ',
       '特权订金订单id', '确认收货时间', '联系手机', '联系电话 ', '订单付款时间', '订单关闭原因', '订单创建时间',
       '订单备注', '订单状态', '运送方式', '返点积分', '退款金额', '数据采集时间'],


...

from sklearn.cluster import KMeans

# 将聚类结果添加到原始数据中
data['Cluster'] = labels


0	13015181676	55.86	1	0
1	13019108165	0.00	2	0
2	13020140119	95.76	2	0
3	13022508850	48.86	1	0
4	13026161372	268.00	1	0


# 计算RFM得分
rfm_table['R'] = rfm_table['Recency'].apply(rfm_score, args=('Recency', quantiles))
rfm_table['F'] = rfm_table['Frequency'].apply(rfm_score, args=('Frequency', quantiles))
rfm_table['M'] = rfm_table['Monetary'].apply(rfm_score, args=('Monetary', quantiles))

# 输出RFM分析结果
print(rfm_table)


top_customers[rfm_table['RFM']>10]


[email protected]	2463	3	1206.0	4	4	4	12
[email protected]	2406	4	1474.0	4	4	4	12
13524685268	2306	5	804.0	4	4	4	12
[email protected]	2425	3	763.5	4	4	4	12
13467712448	2453	3	670.0	4	4	4	12
...	...	...	...	...	...	...	...
[email protected]	2249	7	2546.0	3	4	4	11
15976850599	2204	3	867.0	3	4	4	11
18580706707	2217	15	4020.0	3	4	4	11
18771060321	2445	2	368.0	4	3	4	11
15997278777	2478	2	1034.4	4	3	4	11
相关推荐
yzx99101312 小时前
使用SVM进行图像分类
机器学习·支持向量机·分类
終不似少年遊*21 小时前
MindSpore框架学习项目-ResNet药物分类-数据增强
人工智能·深度学习·分类·数据挖掘·华为云·resnet·modelart
蜡笔小新..1 天前
从零开始:用PyTorch构建CIFAR-10图像分类模型达到接近1的准确率
人工智能·pytorch·机器学习·分类·cifar-10
Tech Synapse2 天前
联邦学习图像分类实战:基于FATE与PyTorch的隐私保护机器学习系统构建指南
pytorch·机器学习·分类
漠缠2 天前
手机相册的 “智能分类” 功能
智能手机·分类·数据挖掘
zeroporn2 天前
在Mac M1/M2上使用Hugging Face Transformers进行中文文本分类(完整指南)
macos·分类·数据挖掘·nlp·transformer·预训练模型·文本分类
BioRunYiXue2 天前
一文了解氨基酸的分类、代谢和应用
人工智能·深度学习·算法·机器学习·分类·数据挖掘·代谢组学
白杆杆红伞伞3 天前
02_线性模型(回归分类模型)
分类·数据挖掘·回归
yzx9910134 天前
支持向量机与逻辑回归的区别及 SVM 在图像分类中的应用
支持向量机·分类·逻辑回归
shadowtalon4 天前
基于CNN的猫狗图像分类系统
人工智能·深度学习·神经网络·机器学习·计算机视觉·分类·cnn