【BXZ_231228】使用Sklearn Kmeans及RFM对淘宝客户进行分类关怀

import random
import string
from datetime import datetime

def generate_random_string(length=3):
    characters = string.ascii_uppercase
    return ''.join(random.choice(characters) for _ in range(length))

def generate_timestamped_string(separator='_'):
    timestamp = datetime.now().strftime('%y%m%d') # %H%M%S
    random_part = generate_random_string(length=3)
    return random_part+separator+timestamp

timestamped_string = generate_timestamped_string()
print('【{0}】'.format(timestamped_string))

【Talk is cheap】

import warnings
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文
plt.rcParams['axes.unicode_minus'] = False # 显示负号
warnings.filterwarnings("ignore")
%matplotlib inline

...
Index(['买家会员名', '买家实际支付积分', '买家实际支付金额', '买家应付货款', '买家应付邮费', '买家支付宝账号',
       '买家支付积分', '买家服务费', '买家留言', '修改后的sku', '修改后的收货地址', '分阶段订单信息', '卖家服务费',
       '发票抬头', '含应开票给个人的个人红包', '天猫卡券抵扣', '定金排名', '宝贝总数量', '宝贝标题 ', '宝贝种类 ',
       '店铺Id', '店铺名称', '异常信息', '总金额', '打款商家金额', '支付单号', '支付详情', '收货人姓名',
       '收货地址', '新零售交易类型', '新零售发货门店id', '新零售发货门店名称', '新零售导购门店id', '新零售导购门店名称',
       '是否上传合同照片', '是否上传小票', '是否代付', '是否手机订单', '是否是O2O交易', '物流公司', '物流单号 ',
       '特权订金订单id', '确认收货时间', '联系手机', '联系电话 ', '订单付款时间', '订单关闭原因', '订单创建时间',
       '订单备注', '订单状态', '运送方式', '返点积分', '退款金额', '数据采集时间'],


...

from sklearn.cluster import KMeans

# 将聚类结果添加到原始数据中
data['Cluster'] = labels


0	13015181676	55.86	1	0
1	13019108165	0.00	2	0
2	13020140119	95.76	2	0
3	13022508850	48.86	1	0
4	13026161372	268.00	1	0


# 计算RFM得分
rfm_table['R'] = rfm_table['Recency'].apply(rfm_score, args=('Recency', quantiles))
rfm_table['F'] = rfm_table['Frequency'].apply(rfm_score, args=('Frequency', quantiles))
rfm_table['M'] = rfm_table['Monetary'].apply(rfm_score, args=('Monetary', quantiles))

# 输出RFM分析结果
print(rfm_table)


top_customers[rfm_table['RFM']>10]


403109394@qq.com	2463	3	1206.0	4	4	4	12
1003673371@qq.com	2406	4	1474.0	4	4	4	12
13524685268	2306	5	804.0	4	4	4	12
794378248@qq.com	2425	3	763.5	4	4	4	12
13467712448	2453	3	670.0	4	4	4	12
...	...	...	...	...	...	...	...
313137525@qq.com	2249	7	2546.0	3	4	4	11
15976850599	2204	3	867.0	3	4	4	11
18580706707	2217	15	4020.0	3	4	4	11
18771060321	2445	2	368.0	4	3	4	11
15997278777	2478	2	1034.4	4	3	4	11
相关推荐
爱喝白开水a14 小时前
Sentence-BERT实现文本匹配【分类目标函数】
人工智能·深度学习·机器学习·自然语言处理·分类·bert·大模型微调
曼城周杰伦1 天前
表格不同类型的数据如何向量化?
人工智能·机器学习·分类·数据挖掘·sklearn·word2vec
沙度灬1 天前
python之sklearn--鸢尾花数据集之数据降维(PCA主成分分析)
开发语言·python·sklearn
菜鸟小码农的博客1 天前
昇思MindSpore第四课---GPT实现情感分类
gpt·分类·数据挖掘
CopyLower1 天前
AI 赋能电商的未来:购物推荐、会员分类与智能定价的创新实践
人工智能·分类·数据挖掘
安静的_显眼包O_o1 天前
get_dumines() 函数,用于将分类变量转换为哑变量
人工智能·分类·数据挖掘
文柏AI共享2 天前
机器学习-朴素贝叶斯
人工智能·机器学习·自然语言处理·分类
Taverry2 天前
机器学习杂笔记1:类型-数据集-效果评估-sklearn-机器学习算法分类
算法·机器学习·sklearn
zhojiew3 天前
sagemaker中使用pytorch框架的DLC训练和部署cifar图像分类任务
人工智能·pytorch·分类
江海寄3 天前
[论文阅读] 异常检测 Deep Learning for Anomaly Detection: A Review (四)三种分类方法对比
论文阅读·人工智能·深度学习·机器学习·计算机视觉·分类