【BXZ_231228】使用Sklearn Kmeans及RFM对淘宝客户进行分类关怀

import random
import string
from datetime import datetime

def generate_random_string(length=3):
    characters = string.ascii_uppercase
    return ''.join(random.choice(characters) for _ in range(length))

def generate_timestamped_string(separator='_'):
    timestamp = datetime.now().strftime('%y%m%d') # %H%M%S
    random_part = generate_random_string(length=3)
    return random_part+separator+timestamp

timestamped_string = generate_timestamped_string()
print('【{0}】'.format(timestamped_string))

【Talk is cheap】

import warnings
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文
plt.rcParams['axes.unicode_minus'] = False # 显示负号
warnings.filterwarnings("ignore")
%matplotlib inline

...
Index(['买家会员名', '买家实际支付积分', '买家实际支付金额', '买家应付货款', '买家应付邮费', '买家支付宝账号',
       '买家支付积分', '买家服务费', '买家留言', '修改后的sku', '修改后的收货地址', '分阶段订单信息', '卖家服务费',
       '发票抬头', '含应开票给个人的个人红包', '天猫卡券抵扣', '定金排名', '宝贝总数量', '宝贝标题 ', '宝贝种类 ',
       '店铺Id', '店铺名称', '异常信息', '总金额', '打款商家金额', '支付单号', '支付详情', '收货人姓名',
       '收货地址', '新零售交易类型', '新零售发货门店id', '新零售发货门店名称', '新零售导购门店id', '新零售导购门店名称',
       '是否上传合同照片', '是否上传小票', '是否代付', '是否手机订单', '是否是O2O交易', '物流公司', '物流单号 ',
       '特权订金订单id', '确认收货时间', '联系手机', '联系电话 ', '订单付款时间', '订单关闭原因', '订单创建时间',
       '订单备注', '订单状态', '运送方式', '返点积分', '退款金额', '数据采集时间'],


...

from sklearn.cluster import KMeans

# 将聚类结果添加到原始数据中
data['Cluster'] = labels


0	13015181676	55.86	1	0
1	13019108165	0.00	2	0
2	13020140119	95.76	2	0
3	13022508850	48.86	1	0
4	13026161372	268.00	1	0


# 计算RFM得分
rfm_table['R'] = rfm_table['Recency'].apply(rfm_score, args=('Recency', quantiles))
rfm_table['F'] = rfm_table['Frequency'].apply(rfm_score, args=('Frequency', quantiles))
rfm_table['M'] = rfm_table['Monetary'].apply(rfm_score, args=('Monetary', quantiles))

# 输出RFM分析结果
print(rfm_table)


top_customers[rfm_table['RFM']>10]


403109394@qq.com	2463	3	1206.0	4	4	4	12
1003673371@qq.com	2406	4	1474.0	4	4	4	12
13524685268	2306	5	804.0	4	4	4	12
794378248@qq.com	2425	3	763.5	4	4	4	12
13467712448	2453	3	670.0	4	4	4	12
...	...	...	...	...	...	...	...
313137525@qq.com	2249	7	2546.0	3	4	4	11
15976850599	2204	3	867.0	3	4	4	11
18580706707	2217	15	4020.0	3	4	4	11
18771060321	2445	2	368.0	4	3	4	11
15997278777	2478	2	1034.4	4	3	4	11
相关推荐
AI技术控4 小时前
机器学习实战——音乐流派分类(主页有源码)
人工智能·机器学习·分类
L_pyu4 小时前
pytorch实现cifar10多分类总结
人工智能·pytorch·分类
gis收藏家12 小时前
使用开放数据、ArcGIS 和 Sklearn 测量洛杉矶的城市相似性
人工智能·arcgis·sklearn
SomeB1oody1 天前
【Python机器学习】1.6. 逻辑回归理论(基础):逻辑函数、逻辑回归的原理、分类任务基本框架、通过线性回归求解分类问题
人工智能·python·机器学习·分类·逻辑回归·线性回归
何仙鸟1 天前
深度学习分类回归(衣帽数据集)
深度学习·分类·回归
max5006001 天前
用python 的 sentiment intensity analyzer的情感分析器,将用户评论进行分类
人工智能·python·分类
AAA顶置摸鱼2 天前
机器学习·NLP中的文本分类
机器学习·自然语言处理·分类
人大博士的交易之路2 天前
本周行情——20250308
人工智能·数学建模·分类·数据挖掘·量化交易·缠论·缠中说禅
xidianjiapei0012 天前
一文读懂深度学习中的损失函数quantifying loss —— 作用、分类和示例代码
人工智能·深度学习·分类·损失函数·交叉熵
紫雾凌寒2 天前
AI Agent 分类详解:从反射 Agent 到学习型 Agent 的演进
人工智能·机器学习·分类·agent·智能体·manus