【BXZ_231228】使用Sklearn Kmeans及RFM对淘宝客户进行分类关怀

复制代码
import random
import string
from datetime import datetime

def generate_random_string(length=3):
    characters = string.ascii_uppercase
    return ''.join(random.choice(characters) for _ in range(length))

def generate_timestamped_string(separator='_'):
    timestamp = datetime.now().strftime('%y%m%d') # %H%M%S
    random_part = generate_random_string(length=3)
    return random_part+separator+timestamp

timestamped_string = generate_timestamped_string()
print('【{0}】'.format(timestamped_string))

【Talk is cheap】

复制代码
import warnings
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文
plt.rcParams['axes.unicode_minus'] = False # 显示负号
warnings.filterwarnings("ignore")
%matplotlib inline

...
Index(['买家会员名', '买家实际支付积分', '买家实际支付金额', '买家应付货款', '买家应付邮费', '买家支付宝账号',
       '买家支付积分', '买家服务费', '买家留言', '修改后的sku', '修改后的收货地址', '分阶段订单信息', '卖家服务费',
       '发票抬头', '含应开票给个人的个人红包', '天猫卡券抵扣', '定金排名', '宝贝总数量', '宝贝标题 ', '宝贝种类 ',
       '店铺Id', '店铺名称', '异常信息', '总金额', '打款商家金额', '支付单号', '支付详情', '收货人姓名',
       '收货地址', '新零售交易类型', '新零售发货门店id', '新零售发货门店名称', '新零售导购门店id', '新零售导购门店名称',
       '是否上传合同照片', '是否上传小票', '是否代付', '是否手机订单', '是否是O2O交易', '物流公司', '物流单号 ',
       '特权订金订单id', '确认收货时间', '联系手机', '联系电话 ', '订单付款时间', '订单关闭原因', '订单创建时间',
       '订单备注', '订单状态', '运送方式', '返点积分', '退款金额', '数据采集时间'],


...

from sklearn.cluster import KMeans

# 将聚类结果添加到原始数据中
data['Cluster'] = labels


0	13015181676	55.86	1	0
1	13019108165	0.00	2	0
2	13020140119	95.76	2	0
3	13022508850	48.86	1	0
4	13026161372	268.00	1	0


# 计算RFM得分
rfm_table['R'] = rfm_table['Recency'].apply(rfm_score, args=('Recency', quantiles))
rfm_table['F'] = rfm_table['Frequency'].apply(rfm_score, args=('Frequency', quantiles))
rfm_table['M'] = rfm_table['Monetary'].apply(rfm_score, args=('Monetary', quantiles))

# 输出RFM分析结果
print(rfm_table)


top_customers[rfm_table['RFM']>10]


403109394@qq.com	2463	3	1206.0	4	4	4	12
1003673371@qq.com	2406	4	1474.0	4	4	4	12
13524685268	2306	5	804.0	4	4	4	12
794378248@qq.com	2425	3	763.5	4	4	4	12
13467712448	2453	3	670.0	4	4	4	12
...	...	...	...	...	...	...	...
313137525@qq.com	2249	7	2546.0	3	4	4	11
15976850599	2204	3	867.0	3	4	4	11
18580706707	2217	15	4020.0	3	4	4	11
18771060321	2445	2	368.0	4	3	4	11
15997278777	2478	2	1034.4	4	3	4	11
相关推荐
一水鉴天8 小时前
整体设计 定稿 之15 chat分类的专题讨论(codebuddy)
大数据·分类·数据挖掘
deng120419 小时前
基于LeNet-5的图像分类小结
人工智能·分类·数据挖掘
陈辛chenxin2 天前
【大数据技术07】分类和聚类算法
神经网络·决策树·分类·聚类·分类算法
hacker7073 天前
openGauss 在K12教育场景的数据处理测评:CASE WHEN 实现高效分类
人工智能·分类·数据挖掘
大数据魔法师4 天前
分类与回归算法(六)- 集成学习(随机森林、梯度提升决策树、Stacking分类)相关理论
分类·回归·集成学习
大数据魔法师4 天前
分类与回归算法(五)- 决策树分类
决策树·分类·回归
happy egg4 天前
随机森林分类VS回归
随机森林·分类·回归
studytosky4 天前
深度学习理论与实战:MNIST 手写数字分类实战
人工智能·pytorch·python·深度学习·机器学习·分类·matplotlib
7***37454 天前
DeepSeek在文本分类中的多标签学习
学习·分类·数据挖掘
Teacher.chenchong5 天前
GEE云端林业遥感:贯通森林分类、森林砍伐与退化监测、火灾评估、森林扰动监测、森林关键生理参数(树高/生物量/碳储量)反演等
人工智能·分类·数据挖掘