目标检测损失函数:IoU、GIoU、DIoU、CIoU、EIoU、alpha IoU、SIoU、WIoU原理及Pytorch实现

前言

损失函数是用来评价模型的预测值和真实值一致程度,损失函数越小,通常模型的性能越好。不同的模型用的损失函数一般也不一样。损失函数主要是用在模型的训练阶段,如果我们想让预测值无限接近于真实值,就需要将损失值降到最低,在这个过程中就需要引入损失函数,而损失函数的选择又是十分关键。尤其是在目标检测中,损失函数直接关乎到检测效果是否准确,其中IOU损失函数目前主要应用于目标检测的领域,其演变的过程如下:IOU --> GIOU --> DIOU -->CIOU损失函数,每一种损失函数都较上一种损失函数有所提升,下面来具体介绍这几种损失函数。

1 IoU(Intersection over Union)

1.1 IoU简介

UnitBox: An Advanced Object Detection Network

IoU全称Intersection over Union,交并比。IoU是一种测量在特定数据集中检测相应物体准确度的一个标准。只要是在输出中得出一个预测范围(bounding boxes)的任务都可以用IoU来进行测量。

IoU算法是使用最广泛的算法,大部分的检测算法都是使用的这个算法。在目标识别中,我们的预测框与实际框的某种比值就是IoU。

1.2 IoU计算公式

1.3 优点

  • IOU能够直观地反映出目标检测结果与真实情况之间的匹配程度。
  • IOU具有尺度不变性,由于IOU是基于重叠度量的,它不受目标尺度和形状变换的影响,这使得IOU适用于各种不同尺度和形状的目标检测任务。

1.4 缺点

  • 当预测框和目标框不相交时,即IOU=0时,不能反映两个目标之间距离的远近,此时损失函数不可导,IOU Loss 无法优化。
  • 当两个检测框大小相同,两个IOU也相同,IOU_Loss无法精确的反映两个框的重合度大小。

1.5 IoU代码

python 复制代码
def IoU(box1, box2):
    b1_x1, b1_y1, b1_x2, b1_y2 = box1
    b2_x1, b2_y1, b2_x2, b2_y2 = box2
    
    xx1 = np.maximum(b1_x1, b2_x1)
    yy1 = np.maximum(b1_y1, b2_y1)
    xx2 = np.minimum(b1_x2, b2_x2)
    yy2 = np.minimum(b1_y2, b2_y2)
    
    w = np.maximum(0.0, yy2 - yy1)
    h = np.maximum(0.0, xx2 - xx1)
 
    inter = w * h
    IoU = inter/((b1_x2-b1_x1)*(b1_y2-b1_y1) + (b2_x2-b2_x1)*(b2_y2-b2_y1) - inter)
    print("IoU: ", IoU)
 
 
if __name__ == "__main__":
    box1 = np.array([100, 100, 210, 210])
    box2 = np.array([150, 150, 230, 220])
    IoU(box1, box2)

2 GIoU

Generalized Intersection over Union: A Metric and A Loss for Bounding BoxRegression

2.1 GIoU简介

通过上述分析,当预测框和真实框不相交时IoU值为0,导致很大范围内损失函数没有梯度。针对这一问题,提出了GIoU作为损失函数。GIoU比IoU多了一个'Generalized',能在更广义的层面上计算IoU。当检测框和真实框没有出现重叠的时候IoU的loss都是一样的,因此GIoU就引入了最小封闭形状C(C可以把A,B包含在内),在不重叠情况下能让预测框尽可能朝着真实框前进,这样就可以解决检测框和真实框没有重叠的问题 。

2.2 GIoU公式

算法公式及其解释:其实想法也很简单(但这一步很难):假如现在有两个box A,B,我们找到一个最小的封闭形状C,让C可以把A,B包含在内,然后再计算C中没有覆盖A和B的面积占C总面积的比值,最后用A与B的IoU减去这个比值,GIoU计算公式如下

2.3 优点

  • GIOU_Loss中,增加了相交尺度的衡量方式,缓解了单纯IOU_Loss时的尴尬,但是依然没有完全解决IoU存在的问题

2.4 缺点

  • 对每个预测框与真实框均要去计算最小外接矩形,计算及收敛速度受到限制
  • 状态1、2、3都是预测框在目标框内部且预测框大小一致的情况,这时预测框和目标框的差集都是相同的,因此这三种状态的GIoU值也都是相同的,这时GIoU退化成了IoU,无法区分相对位置关系。

2.5 GIoU代码

python 复制代码
def GIoU(box1, box2):
    b1_x1, b1_y1, b1_x2, b1_y2 = box1
    b2_x1, b2_y1, b2_x2, b2_y2 = box2
    
    # IOU
    xx1 = np.maximum(b1_x1, b2_x1)
    yy1 = np.maximum(b1_y1, b2_y1)
    xx2 = np.minimum(b1_x2, b2_x2)
    yy2 = np.minimum(b1_y2, b2_y2)
    inter_w = np.maximum(0.0, yy2 - yy1)
    inter_h = np.maximum(0.0, xx2 - xx1)
    inter = inter_w * inter_h
    Union = (b1_x2-b1_x1)*(b1_y2-b1_y1) + (b2_x2-b2_x1)*(b2_y2-b2_y1) - inter
 
    # GIOU
    C_xx1 = np.minimum(b1_x1, b2_x1)
    C_yy1 = np.minimum(b1_y1, b2_y1)
    C_xx2 = np.maximum(b1_x2, b2_x2)
    C_yy2 = np.maximum(b1_y2, b2_y2)
    C_area = (C_xx2 - C_xx1) * (C_yy2 - C_yy1)
 
    IOU = inter / Union
    GIOU = IOU - abs((C_area-Union)/C_area)
    print("GIOU:", GIOU)
 
if __name__ == "__main__":
    box1 = np.array([100, 100, 210, 210])
    box2 = np.array([150, 150, 230, 220])
    GIoU(box1, box2)
相关推荐
初恋叫萱萱几秒前
数据即燃料:用 `cann-data-augmentation` 实现高效训练预处理
人工智能
一战成名9969 分钟前
CANN 仓库揭秘:昇腾 AI 算子开发的宝藏之地
人工智能
hnult16 分钟前
2026 在线培训考试系统选型指南:核心功能拆解与选型逻辑
人工智能·笔记·课程设计
A小码哥16 分钟前
AI 设计时代的到来:从 PS 到 Pencil,一个人如何顶替一个团队
人工智能
AIGCmitutu22 分钟前
PS 物体底部阴影怎么做?3 步做出自然逼真的投影效果
人工智能·电子商务·photoshop·ps·美工
开源技术25 分钟前
Claude Opus 4.6 发布,100万上下文窗口,越贵越好用
人工智能·python
聆风吟º36 分钟前
CANN hccl 深度解析:异构计算集群通信库的跨节点通信与资源管控实现逻辑
人工智能·wpf·transformer·cann
狸奴算君42 分钟前
告别机械回复:三步微调AI模型,打造会“读心”的智能客服
人工智能
七夜zippoe44 分钟前
脉向AI|当豆包手机遭遇“全网封杀“:GUI Agent是通向AGI的必经之路吗?
人工智能·ai·智能手机·agent·gui
木非哲1 小时前
机器学习--随机森林--从一棵树的直觉到一片林的哲学
人工智能·随机森林·机器学习