PyTorch中各种求和运算

首先定义张量A

python 复制代码
A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
tensor([[ 0.,  1.,  2.,  3.],
        [ 4.,  5.,  6.,  7.],
        [ 8.,  9., 10., 11.],
        [12., 13., 14., 15.],
        [16., 17., 18., 19.]])

1. 降维求和

降维求和会沿指定轴降低张量的维度,使它变为一个标量。

python 复制代码
A_sum_axis0 = A.sum(axis=0)  # 压缩为一行
tensor([40., 45., 50., 55.]

A_sum_axis1 = A.sum(axis=1)  # 压缩为一列
tensor([ 6., 22., 38., 54., 70.]

A_sum = A.sum(axis=[0, 1])  # 结果与 A.sum() 相同
tensor(190.)

2. 非降维求和

保持轴数不变

python 复制代码
A_sum_axis0 = A.sum(axis=0, keepdims=True)
tensor([[40., 45., 50., 55.]])

A_sum_axis1 = A.sum(axis=1, keepdims=True)
tensor([[ 6.],
        [22.],
        [38.],
        [54.],
        [70.]])

A_sum = A.sum(axis=[0, 1], keepdims=True)
tensor([[190.]])

3. 累积求和

沿某个轴计算A元素的累积总和,此函数不会沿任何轴降低输入张量的维度。

python 复制代码
A_sum_axis0 = A.cumsum(axis=0)
tensor([[ 0.,  1.,  2.,  3.],
        [ 4.,  6.,  8., 10.],
        [12., 15., 18., 21.],
        [24., 28., 32., 36.],
        [40., 45., 50., 55.]])

A_sum_axis1 = A.cumsum(axis=1)
tensor([[ 0.,  1.,  3.,  6.],
        [ 4.,  9., 15., 22.],
        [ 8., 17., 27., 38.],
        [12., 25., 39., 54.],
        [16., 33., 51., 70.]])
相关推荐
zhz521425 分钟前
AI数字人融合VR全景:从技术突破到可信场景落地
人工智能·vr·ai编程·ai数字人·ai agent·智能体
数据与人工智能律师25 分钟前
虚拟主播肖像权保护,数字时代的法律博弈
大数据·网络·人工智能·算法·区块链
成功人chen某38 分钟前
配置VScodePython环境Python was not found;
开发语言·python
武科大许志伟1 小时前
武汉科技大学人工智能与演化计算实验室许志伟课题组参加2025中国膜计算论坛
人工智能·科技
哲讯智能科技1 小时前
【无标题】威灏光电&哲讯科技MES项目启动会圆满举行
人工智能
__Benco1 小时前
OpenHarmony平台驱动开发(十七),UART
人工智能·驱动开发·harmonyos
小oo呆1 小时前
【自然语言处理与大模型】Windows安装RAGFlow并接入本地Ollama模型
人工智能·自然语言处理
2301_786964361 小时前
EXCEL Python 实现绘制柱状线型组合图和树状图(包含数据透视表)
python·microsoft·excel
开放知识图谱1 小时前
论文浅尝 | HOLMES:面向大语言模型多跳问答的超关系知识图谱方法(ACL2024)
人工智能·语言模型·自然语言处理·知识图谱
weixin_444579301 小时前
基于Llama3的开发应用(二):大语言模型的工业部署
人工智能·语言模型·自然语言处理