PyTorch中各种求和运算

首先定义张量A

python 复制代码
A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
tensor([[ 0.,  1.,  2.,  3.],
        [ 4.,  5.,  6.,  7.],
        [ 8.,  9., 10., 11.],
        [12., 13., 14., 15.],
        [16., 17., 18., 19.]])

1. 降维求和

降维求和会沿指定轴降低张量的维度,使它变为一个标量。

python 复制代码
A_sum_axis0 = A.sum(axis=0)  # 压缩为一行
tensor([40., 45., 50., 55.]

A_sum_axis1 = A.sum(axis=1)  # 压缩为一列
tensor([ 6., 22., 38., 54., 70.]

A_sum = A.sum(axis=[0, 1])  # 结果与 A.sum() 相同
tensor(190.)

2. 非降维求和

保持轴数不变

python 复制代码
A_sum_axis0 = A.sum(axis=0, keepdims=True)
tensor([[40., 45., 50., 55.]])

A_sum_axis1 = A.sum(axis=1, keepdims=True)
tensor([[ 6.],
        [22.],
        [38.],
        [54.],
        [70.]])

A_sum = A.sum(axis=[0, 1], keepdims=True)
tensor([[190.]])

3. 累积求和

沿某个轴计算A元素的累积总和,此函数不会沿任何轴降低输入张量的维度。

python 复制代码
A_sum_axis0 = A.cumsum(axis=0)
tensor([[ 0.,  1.,  2.,  3.],
        [ 4.,  6.,  8., 10.],
        [12., 15., 18., 21.],
        [24., 28., 32., 36.],
        [40., 45., 50., 55.]])

A_sum_axis1 = A.cumsum(axis=1)
tensor([[ 0.,  1.,  3.,  6.],
        [ 4.,  9., 15., 22.],
        [ 8., 17., 27., 38.],
        [12., 25., 39., 54.],
        [16., 33., 51., 70.]])
相关推荐
芯盾时代1 小时前
安全大模型智驱网络和数据安全效能跃迁
网络·人工智能·安全·网络安全
彩讯股份3006342 小时前
打造多模态交互新范式|彩讯股份中标2025年中国移动和留言平台AI智能体研发项目
人工智能
思通数科大数据舆情2 小时前
工业安全零事故的智能守护者:一体化AI智能安防平台
人工智能·安全·目标检测·计算机视觉·目标跟踪·数据挖掘·知识图谱
AI360labs_atyun3 小时前
2025 高考:AI 都在哪些地方发挥了作用
人工智能·科技·ai·高考
Yxh181377845544 小时前
短视频矩阵系统技术saas源头6年开发构架
人工智能·矩阵
m0_634448894 小时前
图上合成:用于大型语言模型持续预训练的知识合成数据生成
人工智能·语言模型·自然语言处理
亚林瓜子4 小时前
AWS中国云的定时任务(AWS EventBridge+AWS Lambda)
python·云计算·aws·lambda·定时任务·event·cron
摆渡搜不到你4 小时前
某腾X视频下载器2.1
python·音视频
科雷软件测试4 小时前
Python格式化:让数据输出更优雅
python
非小号5 小时前
多模态分类案例实现
python·分类·数据挖掘