PyTorch中各种求和运算

首先定义张量A

python 复制代码
A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
tensor([[ 0.,  1.,  2.,  3.],
        [ 4.,  5.,  6.,  7.],
        [ 8.,  9., 10., 11.],
        [12., 13., 14., 15.],
        [16., 17., 18., 19.]])

1. 降维求和

降维求和会沿指定轴降低张量的维度,使它变为一个标量。

python 复制代码
A_sum_axis0 = A.sum(axis=0)  # 压缩为一行
tensor([40., 45., 50., 55.]

A_sum_axis1 = A.sum(axis=1)  # 压缩为一列
tensor([ 6., 22., 38., 54., 70.]

A_sum = A.sum(axis=[0, 1])  # 结果与 A.sum() 相同
tensor(190.)

2. 非降维求和

保持轴数不变

python 复制代码
A_sum_axis0 = A.sum(axis=0, keepdims=True)
tensor([[40., 45., 50., 55.]])

A_sum_axis1 = A.sum(axis=1, keepdims=True)
tensor([[ 6.],
        [22.],
        [38.],
        [54.],
        [70.]])

A_sum = A.sum(axis=[0, 1], keepdims=True)
tensor([[190.]])

3. 累积求和

沿某个轴计算A元素的累积总和,此函数不会沿任何轴降低输入张量的维度。

python 复制代码
A_sum_axis0 = A.cumsum(axis=0)
tensor([[ 0.,  1.,  2.,  3.],
        [ 4.,  6.,  8., 10.],
        [12., 15., 18., 21.],
        [24., 28., 32., 36.],
        [40., 45., 50., 55.]])

A_sum_axis1 = A.cumsum(axis=1)
tensor([[ 0.,  1.,  3.,  6.],
        [ 4.,  9., 15., 22.],
        [ 8., 17., 27., 38.],
        [12., 25., 39., 54.],
        [16., 33., 51., 70.]])
相关推荐
涛涛讲AI32 分钟前
扣子平台音频功能:让声音也能“智能”起来
人工智能·音视频·工作流·智能体·ai智能体·ai应用
霍格沃兹测试开发学社测试人社区35 分钟前
人工智能在音频、视觉、多模态领域的应用
软件测试·人工智能·测试开发·自动化·音视频
herosunly1 小时前
2024:人工智能大模型的璀璨年代
人工智能·大模型·年度总结·博客之星
PaLu-LI1 小时前
ORB-SLAM2源码学习:Initializer.cc(13): Initializer::ReconstructF用F矩阵恢复R,t及三维点
c++·人工智能·学习·线性代数·ubuntu·计算机视觉·矩阵
呆呆珝1 小时前
RKNN_C++版本-YOLOV5
c++·人工智能·嵌入式硬件·yolo
笔触狂放1 小时前
第一章 语音识别概述
人工智能·python·机器学习·语音识别
ZzYH221 小时前
文献阅读 250125-Accurate predictions on small data with a tabular foundation model
人工智能·笔记·深度学习·机器学习
小炫y1 小时前
IBM 后端开发(二)
python
格林威2 小时前
BroadCom-RDMA博通网卡如何进行驱动安装和设置使得对应网口具有RDMA功能以适配RDMA相机
人工智能·数码相机·opencv·计算机视觉·c#
程序员阿龙2 小时前
【精选】基于数据挖掘的招聘信息分析与市场需求预测系统 职位分析、求职者趋势分析 职位匹配、人才趋势、市场需求分析数据挖掘技术 职位需求分析、人才市场趋势预测
人工智能·数据挖掘·数据分析与可视化·数据挖掘技术·人才市场预测·招聘信息分析·在线招聘平台