llama大模型部署

看模型加载的参数设置.

复制代码
import torch

# 初始化Half Tensor
h = torch.tensor([1.0,2.0,3.0], dtype=torch.half)
# h = torch.tensor([1.0,2.0,3.0], dtype=torch.float16) # 跟上面一行一样.

# 查看数据类型
print(h.dtype)
import accelerate
import bitsandbytes
from transformers import AutoTokenizer, AutoModelForCausalLM,TextIteratorStreamer
from transformers import AlbertTokenizer, AlbertModel
model = AlbertModel.from_pretrained('./albert',device_map='auto',torch_dtype=torch.float16,load_in_8bit=True,low_cpu_mem_usage=True)
# torch_dtype 模型本身的类型, 不写的话就自己根据权重文件查询出来.这个是权重文件本身决定的,一般在config.json里面
# load_in_8bit 会把模型转化为8bit类型.这个可以自己设置.

print(1)
  • low_cpu_mem_usage algorithm:

    复制代码
    This is an experimental function that loads the model using ~1x model size CPU memory
    
      Here is how it works:
    
      1. save which state_dict keys we have
      2. drop state_dict before the model is created, since the latter takes 1x model size CPU memory
      3. after the model has been instantiated switch to the meta device all params/buffers that
      are going to be replaced from the loaded state_dict
      4. load state_dict 2nd time
      5. replace the params/buffers from the state_dict
    
      Currently, it can't handle deepspeed ZeRO stage 3 and ignores loading errors

这个算法low_cpu_mem 如果设置True

那么他会进行.

把权重字典的keys保存下来.

然后把state_dict删除.

初始化模型.把需要加载的参数位置放到meta device里面.

再加载state_dict

可以节省cpu内存. 小内存时候需要打开.

相关推荐
dhdjjsjs6 分钟前
Day34 PythonStudy
python
java_logo8 分钟前
Onlyoffice Documentserver Docker 容器化部署指南
运维·人工智能·docker·容器·onlyoffice·milvus·documentserver
数据猿9 分钟前
【金猿人物展】涛思数据创始人、CEO陶建辉:实现AI时代时序数据库向“数据平台”的转型
大数据·数据库·人工智能·时序数据库·涛思数据
TMT星球10 分钟前
京东健康联合京东金榜发布2025年度三大品类金榜
人工智能
oak隔壁找我14 分钟前
Spring AI Alibaba + Crawl4ai + Docker 搭建一个具有联网搜索能力的Agent
人工智能
一个java开发23 分钟前
Dask 配置文件加载机制说明
大数据·python
海边夕阳200627 分钟前
【每天一个AI小知识】:什么是大语言模型(LLM)?
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·llm
算力魔方AIPC27 分钟前
破解“竖排文本”魔咒:在 RTX 3060 上微调 PaddleOCR-VL 以识别日本漫画
人工智能
bj_zhb29 分钟前
图片的base64表示
python·llm
飞Link31 分钟前
【Django】Django 调用外部 Python 程序的完整指南
后端·python·django·sqlite