llama大模型部署

看模型加载的参数设置.

复制代码
import torch

# 初始化Half Tensor
h = torch.tensor([1.0,2.0,3.0], dtype=torch.half)
# h = torch.tensor([1.0,2.0,3.0], dtype=torch.float16) # 跟上面一行一样.

# 查看数据类型
print(h.dtype)
import accelerate
import bitsandbytes
from transformers import AutoTokenizer, AutoModelForCausalLM,TextIteratorStreamer
from transformers import AlbertTokenizer, AlbertModel
model = AlbertModel.from_pretrained('./albert',device_map='auto',torch_dtype=torch.float16,load_in_8bit=True,low_cpu_mem_usage=True)
# torch_dtype 模型本身的类型, 不写的话就自己根据权重文件查询出来.这个是权重文件本身决定的,一般在config.json里面
# load_in_8bit 会把模型转化为8bit类型.这个可以自己设置.

print(1)
  • low_cpu_mem_usage algorithm:

    复制代码
    This is an experimental function that loads the model using ~1x model size CPU memory
    
      Here is how it works:
    
      1. save which state_dict keys we have
      2. drop state_dict before the model is created, since the latter takes 1x model size CPU memory
      3. after the model has been instantiated switch to the meta device all params/buffers that
      are going to be replaced from the loaded state_dict
      4. load state_dict 2nd time
      5. replace the params/buffers from the state_dict
    
      Currently, it can't handle deepspeed ZeRO stage 3 and ignores loading errors

这个算法low_cpu_mem 如果设置True

那么他会进行.

把权重字典的keys保存下来.

然后把state_dict删除.

初始化模型.把需要加载的参数位置放到meta device里面.

再加载state_dict

可以节省cpu内存. 小内存时候需要打开.

相关推荐
从零开始学习人工智能1 小时前
GPUStack:开源GPU集群管理工具,解锁AI模型高效运行新可能
人工智能·开源
C嘎嘎嵌入式开发1 小时前
(六)机器学习之图卷积网络
人工智能·python·机器学习
Msshu1232 小时前
PD快充诱骗协议芯片XSP25支持PD+QC+FCP+SCP+AFC协议支持通过串口读取充电器功率信息
人工智能
一RTOS一4 小时前
东土科技连投三家核心企业 发力具身机器人领域
人工智能·科技·机器人·具身智能·鸿道实时操作系统·国产嵌入式操作系统选型
DataLaboratory4 小时前
Python爬取百度地图-前端直接获取
爬虫·python·百度地图
ACP广源盛139246256736 小时前
(ACP广源盛)GSV1175---- MIPI/LVDS 转 Type-C/DisplayPort 1.2 转换器产品说明及功能分享
人工智能·音视频
胡耀超6 小时前
隐私计算技术全景:从联邦学习到可信执行环境的实战指南—数据安全——隐私计算 联邦学习 多方安全计算 可信执行环境 差分隐私
人工智能·安全·数据安全·tee·联邦学习·差分隐私·隐私计算
Turnsole_y7 小时前
pycharm自动化测试初始化
python·selenium
停停的茶7 小时前
深度学习(目标检测)
人工智能·深度学习·目标检测
Y200309167 小时前
基于 CIFAR10 数据集的卷积神经网络(CNN)模型训练与集成学习
人工智能·cnn·集成学习