llama大模型部署

看模型加载的参数设置.

复制代码
import torch

# 初始化Half Tensor
h = torch.tensor([1.0,2.0,3.0], dtype=torch.half)
# h = torch.tensor([1.0,2.0,3.0], dtype=torch.float16) # 跟上面一行一样.

# 查看数据类型
print(h.dtype)
import accelerate
import bitsandbytes
from transformers import AutoTokenizer, AutoModelForCausalLM,TextIteratorStreamer
from transformers import AlbertTokenizer, AlbertModel
model = AlbertModel.from_pretrained('./albert',device_map='auto',torch_dtype=torch.float16,load_in_8bit=True,low_cpu_mem_usage=True)
# torch_dtype 模型本身的类型, 不写的话就自己根据权重文件查询出来.这个是权重文件本身决定的,一般在config.json里面
# load_in_8bit 会把模型转化为8bit类型.这个可以自己设置.

print(1)
  • low_cpu_mem_usage algorithm:

    复制代码
    This is an experimental function that loads the model using ~1x model size CPU memory
    
      Here is how it works:
    
      1. save which state_dict keys we have
      2. drop state_dict before the model is created, since the latter takes 1x model size CPU memory
      3. after the model has been instantiated switch to the meta device all params/buffers that
      are going to be replaced from the loaded state_dict
      4. load state_dict 2nd time
      5. replace the params/buffers from the state_dict
    
      Currently, it can't handle deepspeed ZeRO stage 3 and ignores loading errors

这个算法low_cpu_mem 如果设置True

那么他会进行.

把权重字典的keys保存下来.

然后把state_dict删除.

初始化模型.把需要加载的参数位置放到meta device里面.

再加载state_dict

可以节省cpu内存. 小内存时候需要打开.

相关推荐
新知图书20 分钟前
FastGPT简介
人工智能·ai agent·智能体·大模型应用开发·大模型应用
seeyoutlb36 分钟前
微服务全局日志处理
java·python·微服务
Dev7z1 小时前
基于Matlab卷积神经网络的交通警察手势识别方法研究与实现
人工智能·神经网络·cnn
ada7_1 小时前
LeetCode(python)——148.排序链表
python·算法·leetcode·链表
元拓数智1 小时前
IntaLink:破解数仓建设痛点,重塑高效建设新范式
大数据·数据仓库·人工智能·数据关系·intalink
区块链小八歌1 小时前
从电商收入到链上资产:Liquid Royalty在 Berachain 重塑 RWA 想象力
大数据·人工智能·区块链
沃达德软件2 小时前
大数据反诈平台功能解析
大数据·人工智能
OAoffice2 小时前
智能学习培训考试平台如何驱动未来组织:重塑人才发展格局
人工智能·学习·企业智能学习考试平台·学练考一体化平台
岁月宁静2 小时前
LangChain + LangGraph 实战:构建生产级多模态 WorkflowAgent 的完整指南
人工智能·python·agent