llama大模型部署

看模型加载的参数设置.

复制代码
import torch

# 初始化Half Tensor
h = torch.tensor([1.0,2.0,3.0], dtype=torch.half)
# h = torch.tensor([1.0,2.0,3.0], dtype=torch.float16) # 跟上面一行一样.

# 查看数据类型
print(h.dtype)
import accelerate
import bitsandbytes
from transformers import AutoTokenizer, AutoModelForCausalLM,TextIteratorStreamer
from transformers import AlbertTokenizer, AlbertModel
model = AlbertModel.from_pretrained('./albert',device_map='auto',torch_dtype=torch.float16,load_in_8bit=True,low_cpu_mem_usage=True)
# torch_dtype 模型本身的类型, 不写的话就自己根据权重文件查询出来.这个是权重文件本身决定的,一般在config.json里面
# load_in_8bit 会把模型转化为8bit类型.这个可以自己设置.

print(1)
  • low_cpu_mem_usage algorithm:

    复制代码
    This is an experimental function that loads the model using ~1x model size CPU memory
    
      Here is how it works:
    
      1. save which state_dict keys we have
      2. drop state_dict before the model is created, since the latter takes 1x model size CPU memory
      3. after the model has been instantiated switch to the meta device all params/buffers that
      are going to be replaced from the loaded state_dict
      4. load state_dict 2nd time
      5. replace the params/buffers from the state_dict
    
      Currently, it can't handle deepspeed ZeRO stage 3 and ignores loading errors

这个算法low_cpu_mem 如果设置True

那么他会进行.

把权重字典的keys保存下来.

然后把state_dict删除.

初始化模型.把需要加载的参数位置放到meta device里面.

再加载state_dict

可以节省cpu内存. 小内存时候需要打开.

相关推荐
Ki13818 分钟前
我的AI学习小结:从入门到放弃
人工智能·学习
BoBoZz198 分钟前
AlignTwoPolyDatas 基于ICP算法的配准和相机视角切换
python·vtk·图形渲染·图形处理
迪三达10 分钟前
智能体交易员 - AI-Trader
人工智能
dog25017 分钟前
LLM(大语言模型)和高尔顿板
人工智能·语言模型·自然语言处理·高尔顿板
嗝o゚20 分钟前
Flutter与开源鸿蒙:一场“应用定义权”的静默战争,与开发者的“范式跃迁”机会
python·flutter
一只会奔跑的小橙子23 分钟前
pytest安装对应的库的方法
python
LaughingZhu26 分钟前
Product Hunt 每日热榜 | 2025-12-13
人工智能·经验分享·神经网络·搜索引擎·产品运营
Hello娃的27 分钟前
【量子力学】Hohenberg-Kohn 定理
人工智能·算法
学好statistics和DS33 分钟前
机器学习中所有可以调整的超参数(考试/自己调参用)
人工智能·机器学习