为什么需要对数值类型的特征做归一化?

对数值类型的特征做归一化可以将所有的特征都统一到一个大致相同的数值区间内。最常用的方法有以下两种:

(1)线性函数归一化(Min-Max Scaling)

它对原始数据进行线性变换,使结果映射到【0,1】的范围,实现对数据的等比放缩。归一化公式如下

其中为原始数据,分别为数据最大值和最小值。

(2)零均值归一化(Z-Score Normalization)

它会将原始数据映射到均值为0,标准差为1的分布上。具体来说,假设原始特征的均值为、标准差为,那么归一化公式定义为

为什么需要对数值型特征做归一化呢?我们不妨借助随机梯度下降的实例来说明归一化的重要性。假设有两种数值型特征,的取值范围为【0,10】,的取值范围为【0,3】,于是可以构造一个目标函数符合图1.1(a)中的等值图。

在学习速率相同的情况下,的更新速度会大于,需要较多的迭代才能找到最优解。如果将归一化到相同的数值区间后,优化目标的等值图会变成图1.1(b)中的圆形。 的更新速度变得更为一致,容易更快地通过梯度下降找到最优解

当然,数据归一化并不是万能的。在实际应用中,通过梯度下降法求解的模型通常是需要归一化的,包括线性回归、逻辑回归、支持向量机、神经网络等模型。但对于决策树模型则并不适用,以C4.5为例,决策树在进行节点分裂时主要依据数据集关于特征的信息增益比,而信息增益比跟特征是否归一化是无关的,因为归一化并不会改变样本在特征上的信息增益。

相关推荐
林开落L2 分钟前
前缀和算法习题篇(上)
c++·算法·leetcode
远望清一色3 分钟前
基于MATLAB边缘检测博文
开发语言·算法·matlab
千天夜4 分钟前
激活函数解析:神经网络背后的“驱动力”
人工智能·深度学习·神经网络
tyler_download4 分钟前
手撸 chatgpt 大模型:简述 LLM 的架构,算法和训练流程
算法·chatgpt
大数据面试宝典5 分钟前
用AI来写SQL:让ChatGPT成为你的数据库助手
数据库·人工智能·chatgpt
封步宇AIGC10 分钟前
量化交易系统开发-实时行情自动化交易-3.4.1.2.A股交易数据
人工智能·python·机器学习·数据挖掘
m0_5236742112 分钟前
技术前沿:从强化学习到Prompt Engineering,业务流程管理的创新之路
人工智能·深度学习·目标检测·机器学习·语言模型·自然语言处理·数据挖掘
HappyAcmen22 分钟前
IDEA部署AI代写插件
java·人工智能·intellij-idea
SoraLuna24 分钟前
「Mac玩转仓颉内测版7」入门篇7 - Cangjie控制结构(下)
算法·macos·动态规划·cangjie
我狠狠地刷刷刷刷刷28 分钟前
中文分词模拟器
开发语言·python·算法