Algorithms practice:leetcode 33. Search in Rotated Sorted Array

Algorithms practice:leetcode33 Search in Rotated Sorted Array

Description

There is an integer array nums sorted in ascending order (with distinct values).

Prior to being passed to your function, nums is possibly rotated at an unknown pivot index k (1 <= k < nums.length) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]] (0-indexed). For example, [0,1,2,4,5,6,7] might be rotated at pivot index 3 and become [4,5,6,7,0,1,2].

Given the array nums after the possible rotation and an integer target, return the index of target if it is in nums, or -1 if it is not in nums.

You must write an algorithm with O(log n) runtime complexity.

Example

Example 1:

Input: nums = [4,5,6,7,0,1,2], target = 0

Output: 4

Example 2:

Input: nums = [4,5,6,7,0,1,2], target = 3

Output: -1

Example 3:

Input: nums = [1], target = 0

Output: -1

Constraints

Constraints:

1 <= nums.length <= 5000

-104 <= nums[i] <= 104

All values of nums are unique.

nums is an ascending array that is possibly rotated.

-104 <= target <= 104

code

cpp 复制代码
class Solution {
public:
    int search(vector<int>& nums, int target) {
        int left =0;
        int right = nums.size()-1;

        while(left<=right)
        {
            int mid = (left+right)/2;
             if (nums[mid] == target)
            {
                return mid;
            }
            if(nums[left] <=nums[mid]) // [left , mid] order subarray
            {
                if(nums[left] <=target && target< nums[mid])
                {
                    right = mid-1;
                }
                else//( target> nums[mid] || target< nums[right])
                {
                    left = mid+1;
                }

            }
            else
            {
                // [mid , right] order subarray
                if(nums[mid] <target && target<= nums[right])
                {
                    left = mid+1;
                }
                else //( target> nums[mid] || target< nums[right])
                {
                     right = mid-1;
                }

            }
        }
        return -1;
    }
};

Oral process of solving problems

pivot index k = 0 0 1 2 3 4 5 6

pivot index k = 1 1 2 3 4 5 6 0

pivot index k = 2 2 3 4 5 6 0 1

pivot index k = 3 3 4 5 6 0 1 2

pivot index k = 4 4 5 6 0 1 2 3

pivot index k = 5 5 6 0 1 2 3 4

pivot index k = 6 6 0 1 2 3 4 5

pivot index k = 0 0 1 2 3 4 5 6

The problem requires a runtime complexity of O(log n), which can be achieved by using binary search. The main idea is to divide the search space into two halves using the middle element. If the middle element is the target, the process terminates. If not, we decide which subarray to continue the search in. The key to the problem is how to choose the subarray.

The 'nums' array may be rotated at an unknown pivot index 'k'. The pivot indices are listed from 0 to 6 in the rotated arrays above. All possible rotated results can be seen. The origin array should be separated into two ascending arrays. If the array is split into two equal parts, there must be an ascending subarray.

For example, if the pivot index k = 2 [2 3 4 5 6 0 1],and target is 3, we select index 3 as the middle element.

The sub-array to the left of the middle item is [2 3 4 5], and the sub-array to the right of the middle item is [6 0 1].

The first sub-array is in ascending order, and we can determine if the target is in this array. In this case, the target is 3, which satisfies the conditions 2<3 and 3<5. Therefore, the target must be in this sub-array. If it is, we select this sub-array in the next iteration. Otherwise, we choose a different approach.

Therefore, to decide on a subarray, we must first find the subarray in order and check whether the target is in this array. If it is, we choose this subarray. If not, we choose another subarray.

now write code:

firstly, we declare two int variables as Pointers: a left pointer and a right pointer and assign 0 to left point ,assign nums.size()-1 to right point .

we declare

cpp 复制代码
int left =0;
int right = nums.size()-1;

we use while loop. In each iteration , we check whether a subarray is order? if nums[left] <=nums[mid], the subarray from left to mid is order subarray. then if target in this subarray , we move right to mid -1. otherwise, we move left to mid+1

if above requirement is not meet, we can say the subarray from mid to right is order subarray. then if target in this subarray , we move left to mid+1. otherwise, we move right to mid -1...

Time Complexity: The time complexity is O(log⁡n) since we're performing a binary search over the elements of the array.

Space Complexity: The space complexity is O(1) because we only use a constant amount of space to store our variables (left\text{left}left, right\text{right}right, mid\text{mid}mid), regardless of the size of the input array.

words

Initialization is the process of assigning a value to the Variable. [2]

Declare and initialize a variable with an integer value [3]

binary search 二分搜索算法

terminate 终止(进程)

subarray

ascending

iteration迭代

pointer 指针

we declare two int variables 申明变量

assign 0 to left point 赋值

https://leetcode.com/problems/search-in-rotated-sorted-array/description/

  1. C++ Variables
  2. https://www.learncpp.com/cpp-tutorial/variable-assignment-and-initialization/
  3. https://www.codeease.net/programming/python/Declaration-and-Initialization-of-Variables
  4. https://leetcode.com/problems/search-in-rotated-sorted-array/solutions/3879263/100-binary-search-easy-video-o-log-n-optimal-solution/
相关推荐
葫三生1 小时前
如何评价《论三生原理》在科技界的地位?
人工智能·算法·机器学习·数学建模·量子计算
拓端研究室3 小时前
视频讲解:门槛效应模型Threshold Effect分析数字金融指数与消费结构数据
前端·算法
随缘而动,随遇而安5 小时前
第八十八篇 大数据中的递归算法:从俄罗斯套娃到分布式计算的奇妙之旅
大数据·数据结构·算法
IT古董5 小时前
【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
神经网络·算法·机器学习
Alfred king8 小时前
面试150 生命游戏
leetcode·游戏·面试·数组
水木兰亭8 小时前
数据结构之——树及树的存储
数据结构·c++·学习·算法
Jess079 小时前
插入排序的简单介绍
数据结构·算法·排序算法
老一岁9 小时前
选择排序算法详解
数据结构·算法·排序算法
xindafu9 小时前
代码随想录算法训练营第四十二天|动态规划part9
算法·动态规划
xindafu9 小时前
代码随想录算法训练营第四十五天|动态规划part12
算法·动态规划