不同参数规模大语言模型在不同微调方法下所需要的显存总结

原文来自DataLearnerAI官方网站:

不同参数规模大语言模型在不同微调方法下所需要的显存总结 | 数据学习者官方网站(Datalearner)https://www.datalearner.com/blog/1051703254378255

大模型的微调是当前很多人都在做的事情。微调可以让大语言模型适应特定领域的任务,识别特定的指令等。但是大模型的微调需要的显存较高,而且比较难以估计。与推理不同,微调过程微调方法的选择以及输入序列的长度、批次大小都会影响微调显存的需求。本文根据LLaMA Factory的数据总结一下大模型微调的显存要求。

在此前的文章中,我们已经解释了大模型推理和显存之间的估算方法:需要多少GPU显存才能运行预训练大语言模型?大语言模型参数规模与显存大小的关系估算方法~。即大模型推理显存约等于模型参数乘以2,而微调则只给了方法没有具体公式。

不同参数规模的大模型在不同微调方法下所需的显存大小,十分有参考意义:

微调方法 模型精度 70亿参数模型 130亿参数模型 300亿参数模型 650亿参数模型 8x7B(MoE)
Full 16 160GB 320GB 600GB 1200GB 1000GB
Freeze 16 20GB 40GB 120GB 240GB 200GB
LoRA 16 16GB 32GB 80GB 160GB 120GB
QLoRA 8 10GB 16GB 40GB 80GB 80GB
QLoRA 4 6GB 12GB 24GB 48GB 32GB

这里的微调方法介绍参考和数据来源见原文:不同参数规模大语言模型在不同微调方法下所需要的显存总结 | 数据学习者官方网站(Datalearner)

这里比较重要的参考是8×7B的MoE模型。这个显然就是前段时间刚刚发布的Mixtral大模型(即Mistral 8×7B MoE,详情参考:MistralAI的混合专家大模型Mistral-7B×8-MoE详细介绍,效果超过LLaMA2-70B和GPT-3.5,推理速度快6倍)。这个模型实际参数450亿,每次推理只会激活120亿的参数。这个模型在微调的时候需要的显存大小和450亿参数规模的模型相当。也就是说,MoE最大的优点应该是提升推理速度。推理现存与微调显存实际上不会有什么优势(根据实际测试,Mixtral 8×7B MoE推理最少也要90多G的显存)。如果使用QLoRA方法,那么显存大小会显著降低。不过,这也会降低一点精度。

原文来自DataLearnerAI:不同参数规模大语言模型在不同微调方法下所需要的显存总结 | 数据学习者官方网站(Datalearner)

相关推荐
卧式纯绿11 分钟前
每日文献(八)——Part one
人工智能·yolo·目标检测·计算机视觉·目标跟踪·cnn
巷95517 分钟前
OpenCV图像形态学:原理、操作与应用详解
人工智能·opencv·计算机视觉
深蓝易网1 小时前
为什么制造企业需要用MES管理系统升级改造车间
大数据·运维·人工智能·制造·devops
xiangzhihong81 小时前
Amodal3R ,南洋理工推出的 3D 生成模型
人工智能·深度学习·计算机视觉
狂奔solar1 小时前
diffusion-vas 提升遮挡区域的分割精度
人工智能·深度学习
资源大全免费分享1 小时前
MacOS 的 AI Agent 新星,本地沙盒驱动,解锁 macOS 操作新体验!
人工智能·macos·策略模式
跳跳糖炒酸奶2 小时前
第四章、Isaacsim在GUI中构建机器人(2):组装一个简单的机器人
人工智能·python·算法·ubuntu·机器人
AI.NET 极客圈2 小时前
AI与.NET技术实操系列(四):使用 Semantic Kernel 和 DeepSeek 构建AI应用
人工智能·.net
Debroon2 小时前
应华为 AI 医疗军团之战,各方动态和反应
人工智能·华为
俊哥V2 小时前
阿里通义千问发布全模态开源大模型Qwen2.5-Omni-7B
人工智能·ai