不同参数规模大语言模型在不同微调方法下所需要的显存总结

原文来自DataLearnerAI官方网站:

不同参数规模大语言模型在不同微调方法下所需要的显存总结 | 数据学习者官方网站(Datalearner)https://www.datalearner.com/blog/1051703254378255

大模型的微调是当前很多人都在做的事情。微调可以让大语言模型适应特定领域的任务,识别特定的指令等。但是大模型的微调需要的显存较高,而且比较难以估计。与推理不同,微调过程微调方法的选择以及输入序列的长度、批次大小都会影响微调显存的需求。本文根据LLaMA Factory的数据总结一下大模型微调的显存要求。

在此前的文章中,我们已经解释了大模型推理和显存之间的估算方法:需要多少GPU显存才能运行预训练大语言模型?大语言模型参数规模与显存大小的关系估算方法~。即大模型推理显存约等于模型参数乘以2,而微调则只给了方法没有具体公式。

不同参数规模的大模型在不同微调方法下所需的显存大小,十分有参考意义:

微调方法 模型精度 70亿参数模型 130亿参数模型 300亿参数模型 650亿参数模型 8x7B(MoE)
Full 16 160GB 320GB 600GB 1200GB 1000GB
Freeze 16 20GB 40GB 120GB 240GB 200GB
LoRA 16 16GB 32GB 80GB 160GB 120GB
QLoRA 8 10GB 16GB 40GB 80GB 80GB
QLoRA 4 6GB 12GB 24GB 48GB 32GB

这里的微调方法介绍参考和数据来源见原文:不同参数规模大语言模型在不同微调方法下所需要的显存总结 | 数据学习者官方网站(Datalearner)

这里比较重要的参考是8×7B的MoE模型。这个显然就是前段时间刚刚发布的Mixtral大模型(即Mistral 8×7B MoE,详情参考:MistralAI的混合专家大模型Mistral-7B×8-MoE详细介绍,效果超过LLaMA2-70B和GPT-3.5,推理速度快6倍)。这个模型实际参数450亿,每次推理只会激活120亿的参数。这个模型在微调的时候需要的显存大小和450亿参数规模的模型相当。也就是说,MoE最大的优点应该是提升推理速度。推理现存与微调显存实际上不会有什么优势(根据实际测试,Mixtral 8×7B MoE推理最少也要90多G的显存)。如果使用QLoRA方法,那么显存大小会显著降低。不过,这也会降低一点精度。

原文来自DataLearnerAI:不同参数规模大语言模型在不同微调方法下所需要的显存总结 | 数据学习者官方网站(Datalearner)

相关推荐
Elastic 中国社区官方博客8 分钟前
使用 Discord 和 Elastic Agent Builder A2A 构建游戏社区支持机器人
人工智能·elasticsearch·游戏·搜索引擎·ai·机器人·全文检索
2501_933329551 小时前
企业级AI舆情中台架构实践:Infoseek系统如何实现亿级数据实时监测与智能处置?
人工智能·架构
阿杰学AI1 小时前
AI核心知识70——大语言模型之Context Engineering(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·数据处理·上下文工程
赛博鲁迅1 小时前
物理AI元年:AI走出屏幕进入现实,88API为机器人装上“最强大脑“
人工智能·机器人
管牛牛1 小时前
图像的卷积操作
人工智能·深度学习·计算机视觉
云卓SKYDROID2 小时前
无人机航线辅助模块技术解析
人工智能·无人机·高科技·云卓科技
琅琊榜首20202 小时前
AI生成脑洞付费短篇小说:从灵感触发到内容落地
大数据·人工智能
imbackneverdie2 小时前
近年来,我一直在用的科研工具
人工智能·自然语言处理·aigc·论文·ai写作·学术·ai工具
roman_日积跬步-终至千里3 小时前
【计算机视觉-作业1】从图像到向量:kNN数据预处理完整流程
人工智能·计算机视觉