目标检测-Two Stage-Fast RCNN

文章目录


前言

前文目标检测-Two Stage-SPP Net中提到SPP Net的主要缺点是:

  • 分开训练多个模型困难且复杂
  • 尽管比RCNN快10-100倍,但仍然很慢
  • SPP Net无法更新空间金字塔池化层以下的权重,根本原因是,当每个训练样本来自不同影像时,通过SPP层的反向传播效率很低

Fast RCNN针对上述缺点做了改进


提示:以下是本篇文章正文内容,下面内容可供参考

一、Fast RCNN的网络结构和流程

  1. 使用Selective Search提取2,000个感兴趣区(RoIs)
  2. 预训练CNN模型(VGG)+ 微调(fine-tuning) / 从头开始训练模型
  3. 使用CNN网络从整个图像中提取特征图(feature maps)
  4. 使用线性模型将RoI在原图的位置映射到卷积层特征图,以获取每个RoI的特征图(feature map)
  5. 通过ROI池化层(ROI Pooling Layer)将每个RoI的feature map转化为固定大小

ps:ROI Pooling Layer实质就是单层(7×7) SPP Layer

  1. 将经过ROI池化层得到的候选窗口的表示输入全连接网络
  2. 将全连接网络输出直接输入神经网络分类器(Linear+softmax)和神经网络回归器(Linear),得到类别和目标框

二、Fast RCNN的创新点

1.特征提取+分类+回归合一

使用softmax替代SVM分类,同时利用多任务损失函数(multi-task loss)将边框回归(Bounding Box Regression)也加入到了网络中,这样整个的训练过程除去Region Proposal提取阶段外,其余部分是端到端的,使得训练变得简便快捷

Fast R-CNN的multi-task loss为分类交叉熵损失和回归L1损失的加权和

2.更快的训练策略

在Fast RCNN网络训练中,随机梯度下降(SGD)的小批量是被分层采样的,首先采样 N N N个图像,然后从每个图像采样 R R R个 RoI。关键的是,来自同一图像的RoI在向前和向后传播中共享计算和内存。减小 N N N,就减少了小批量的计算。例如,当 N = 2 N = 2 N=2和 R = 128 R = 128 R=128时,得到的训练方案比从128幅不同的图采样一个RoI(即R-CNN和SPPnet的策略)快64倍。

ps:SPP-net是先把所有图像用SS计算的RoIs存起来,再从中每次随机选128个RoIs作为一个batch进行训练,这128个RoIs最坏的情况来自128张不同的图像,那么要对128张图像都送入网络计算其特征,同时内存要把128张图像的各层feature maps都记录下来(反向求导时要用),所以时间和空间上开销都比较大;而Fast R-CNN虽然也是SS计算RoIs,但每次只选2张图像的RoIs(一张图像上约2000个RoIs),再从中选128个作为一个batch,那么训练时只要计算和存储2张图像的Feature maps,所以时间和内存开销更小


总结

尽管相比于RCNN和SPP Net更快更简便,但Fast R-CNN仍是通过手工方法(Selective Search)寻找的候选框,非常耗时。

相关推荐
IT_陈寒3 小时前
React 18实战:7个被低估的Hooks技巧让你的开发效率提升50%
前端·人工智能·后端
逛逛GitHub4 小时前
飞书多维表“独立”了!功能强大的超出想象。
人工智能·github·产品
机器之心4 小时前
刚刚,DeepSeek-R1论文登上Nature封面,通讯作者梁文锋
人工智能·openai
CoovallyAIHub5 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
CoovallyAIHub5 小时前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
aneasystone本尊6 小时前
学习 Chat2Graph 的知识库服务
人工智能
IT_陈寒7 小时前
Redis 性能翻倍的 7 个冷门技巧,第 5 个大多数人都不知道!
前端·人工智能·后端
飞哥数智坊17 小时前
GPT-5-Codex 发布,Codex 正在取代 Claude
人工智能·ai编程
倔强青铜三17 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试
虫无涯18 小时前
Dify Agent + AntV 实战:从 0 到 1 打造数据可视化解决方案
人工智能