机器学习系列13:通过随机森林获取特征重要性

我们已经知道通过 L1 正则化和 SBS 算法可以用来做特征选择。

我们还可以通过随机森林从数据集中选择相关的特征。随机森林里面包含了多棵决策树,我们可以通过计算特征在每棵决策树决策过程中所产生的的信息增益平均值来衡量该特征的重要性。

你可能需要参考:《机器学习系列06:决策树

这种方法无需对特征做归一化或者标准化预处理,也不假设数据集是否线性可分。

以红酒数据集为例。我们可以直接通过 feature_importances_ 属性获取每个特征的重要性,所有特征重要性之和为 1.0。

我们可以更直观地可视化观察一下。

可以看到上面随机森林选出的前 3 个特征最重要的特征中有 2 也出现在了之前在

机器学习系列12:减少过拟合------降维(特征选择)》中使用 SFS 算法选择的 3 个最重要的特征中。

我们可以通过 scikit-learn 提供的 SelectFromModel 来通过 threshold 参数设定一个阈值 ,选择满足这个贡献度阈值的特征出来。

可以看到选择了 5 个特征,现在我们就用这 5 个特征拟合一下 kNN 算法。

可以对比一下在用 SFS 算法选择的 3 个特征拟合的 kNN 算法。

选择 5 个特征时,模型在训练集和测试集上的表现和选择全部特征的表现相当!

相关推荐
测试人社区-小明几秒前
智能测试误报问题的深度解析与应对策略
人工智能·opencv·线性代数·微服务·矩阵·架构·数据挖掘
阿达_优阅达6 分钟前
Tableau 2025.3 发布!可视化扩展升级、Server 版 Agent、平台数据 API,让 AI 深度融入业务工作流
人工智能·ai·数据分析·数据可视化·仪表板·tableau·版本更新
春日见23 分钟前
基于深度学习的机械臂抓取
人工智能
希艾席帝恩28 分钟前
数字孪生如何重塑现代制造体系?
大数据·人工智能·数字孪生·数据可视化·数字化转型
浔川python社30 分钟前
关于浔川 AI 翻译项目推进建议的公告
人工智能
武汉海翎光电31 分钟前
从数据采集到智能决策:船舶传感器的技术跃迁之路
大数据·人工智能
ytttr87339 分钟前
matlab实现多标签K近邻(ML-KNN)算法
算法·机器学习·matlab
一招定胜负1 小时前
逻辑回归调优三板斧:参数调整、阈值设定、数据集平衡
算法·机器学习·逻辑回归