AcWing算法提高课-2.3.1矩阵距离

算法提高课整理

CSDN个人主页:更好的阅读体验


本文同步发表于 CSDN | 洛谷 | AcWing | 个人博客

原题链接
题目描述

给定一个 01 矩阵,求矩阵中每个元素离 1 的最短曼哈顿距离。

输入格式

第一行两个整数 n , m n,m n,m。

接下来一个 n n n 行 m m m 列的 01 矩阵,数字之间没有空格。

输出格式

一个 n n n 行 m m m 列的矩阵,相邻数字之间用空格隔开。

数据范围

1 ≤ n , m ≤ 1000 1\le n,m\le 1000 1≤n,m≤1000


思路

先考虑从 0 的位置向外扩展。

发现这样的话较麻烦,于是改为考虑从 1 的位置用 BFS 向外扩展,并处理出所有的距离。

这种算法即为 "多源 BFS"。具体算法流程为:将所有源点都入队,然后正常跑 BFS。

具体细节见代码。

算法时间复杂度
AC Code

C + + \text{C}++ C++

cpp 复制代码
#include <iostream>
#include <cstring>
#include <queue>

using namespace std;

typedef pair<int, int> PII;
#define x first
#define y second

const int N = 1010;
int dx[] = {-1, 0, 1, 0};
int dy[] = {0, 1, 0, -1};

int n, m;
char g[N][N];
int dist[N][N];

void bfs()
{
    memset(dist, -1, sizeof dist);
    queue<PII> q;
    
    for (int i = 0; i < n; i ++ )
        for (int j = 0; j < m; j ++ )
            if (g[i][j] == '1')
                dist[i][j] = 0, q.push({i, j}); // 所有起点入队
    
    while (q.size())
    {
        PII t = q.front();
        q.pop();
        
        for (int i = 0; i < 4; i ++ ) // 4方向扩展
        {
            int x = t.x + dx[i], y = t.y + dy[i];
            if (x < 0 || x >= n || y < 0 || y >= m) continue; // 出界
            if (dist[x][y] != -1) continue; // 已经被遍历过
            dist[x][y] = dist[t.x][t.y] + 1; // 合法的话更新距离
            q.push({x, y}); // 新点入队
        }
    }
}

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 0; i < n; i ++ )
        scanf("%s", g[i]);
    
    bfs();
    
    for (int i = 0; i < n; i ++ )
    {
        for (int j = 0; j < m; j ++ )
            printf("%d ", dist[i][j]);
        puts("");
    }
    
    return 0;
}

最后,如果觉得对您有帮助的话,点个赞再走吧!

相关推荐
simple_ssn7 分钟前
【C语言刷力扣】1502.判断能否形成等差数列
c语言·算法·leetcode
寂静山林16 分钟前
UVa 11855 Buzzwords
算法
Curry_Math20 分钟前
LeetCode 热题100之技巧关卡
算法·leetcode
ahadee28 分钟前
蓝桥杯每日真题 - 第10天
c语言·vscode·算法·蓝桥杯
军训猫猫头1 小时前
35.矩阵格式的一到一百数字 C语言
c语言·算法
Mr_Xuhhh2 小时前
递归搜索与回溯算法
c语言·开发语言·c++·算法·github
SoraLuna2 小时前
「Mac玩转仓颉内测版12」PTA刷题篇3 - L1-003 个位数统计
算法·macos·cangjie
无敌岩雀2 小时前
C++设计模式行为模式———命令模式
c++·设计模式·命令模式
爱吃生蚝的于勒4 小时前
C语言内存函数
c语言·开发语言·数据结构·c++·学习·算法
小白学大数据6 小时前
Python爬虫开发中的分析与方案制定
开发语言·c++·爬虫·python