【排序算法】LeetCode-347. 前 K 个高频元素

347. 前 K 个高频元素。

给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。

示例 1:

复制代码
输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]

示例 2:

复制代码
输入: nums = [1], k = 1
输出: [1]

提示:

复制代码
1 <= nums.length <= 10^5
k 的取值范围是 [1, 数组中不相同的元素的个数]
题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的

进阶:你所设计算法的时间复杂度 必须 优于 O(n log n) ,其中 n 是数组大小。

算法分析

解题思路

  • 借助 哈希表 来建立数字和其出现次数的映射,遍历一遍数组统计元素的频率

  • 维护一个元素数目为 kkk 的最小堆

  • 每次都将新的元素与堆顶元素(堆中频率最小的元素)进行比较

  • 如果新的元素的频率比堆顶端的元素大,则弹出堆顶端的元素,将新的元素添加进堆中
    最终,堆中的 kkk 个元素即为前 kkk 个高频元素

    class Solution {
    public int[] topKFrequent(int[] nums, int k) {
    Map<Integer, Integer> map = new HashMap<>();
    for (int num : nums) {
    map.put(num, map.getOrDefault(num, 0) + 1);
    }
    PriorityQueue<Integer> pq = new PriorityQueue<>((e1, e2) -> map.get(e1) - map.get(e2));

    复制代码
          for (Integer key: map.keySet()) {
              if (pq.size() < k) {
                  pq.add(key);
              } else if (map.get(key) > map.get(pq.peek())) {
                  pq.remove();
                  pq.add(key);
              }
          }
    
          int[] res = new int[k];
          int index = 0;
          while(!pq.isEmpty()) {
              res[index++] = pq.remove();
          }
          return res;
      }

    }

复杂性分析

时间复杂度:O(nlogk)

空间复杂度:O(n)

相关推荐
Ymmmm__1 分钟前
leetcode动态规划—买卖股票系列
算法·leetcode·动态规划
极光雨雨4 分钟前
【算法】贪心算法
算法·贪心算法
asom225 分钟前
LeetCode Hot100(动态规划)
算法·leetcode·动态规划
编程绿豆侠8 分钟前
力扣HOT100之动态规划:300. 最长递增子序列
算法·leetcode·动态规划
心软且酷丶9 分钟前
leetcode:7. 整数反转(python3解法,数学相关算法题)
python·算法·leetcode
庄小焱14 分钟前
设计模式——简单工厂模式(创建型)
java·服务器·算法
王禄DUT21 分钟前
防疫大数据 第27次CCF-CSP计算机软件能力认证
大数据·c++·算法
苏荷水32 分钟前
day14 leetcode-hot100-25(链表4)
算法·leetcode·链表
小手冰凉yy38 分钟前
VMware-workstation安装教程--超详细(附带安装包)附带安装CentOS系统教程
linux·centos·vmware安装
TT哇1 小时前
【位运算】常见位运算总结
java·算法