Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models

ABSTRACT

现代大规模视觉-语言模型(LVLMs)采用了相同的视觉词汇-CLIP,可以涵盖大多数常见的视觉任务。然而,对于一些需要密集和细粒度视觉感知的特殊视觉任务,例如文档级OCR或图表理解,尤其是在非英语环境中,CLIP风格的词汇可能在分词视觉知识方面效率较低,甚至遇到词汇表外问题。因此,我们提出了一种名为Vary的有效方法,用于扩大LVLMs的视觉词汇。Vary的过程自然地分为两个步骤:生成和整合新的视觉词汇。在第一阶段,我们设计了一个词汇网络以及一个小型的仅解码器的transformer,通过自回归方式生成所需的词汇。接下来,我们通过将新的词汇与原始词汇(CLIP)合并,扩大了原始的视觉词汇,使LVLMs能够快速获得新特征。与流行的BLIP-2、MiniGPT4和LLaVA相比,Vary在保持其原有功能的同时,拥有更出色的细粒度感知和理解能力。具体而言,Vary在新的文档解析功能(OCR或标记转换)上表现出色,在DocVQA中实现了78.2%的ANLS,以及在MMVet中实现了36.2%的成绩。我们的代码将在主页上公开发布。

论文地址:论文
即将开源:主页
开源代码:代码

该论文旨在解决大规模视觉-语言模型(LVLMs)中视觉词汇表规模的限制问题。在传统的视觉-语言模型中,通常使用一个固定大小的视觉词汇表来表示图像的视觉信息。然而,这种固定大小的词汇表可能无法有效地覆盖复杂和多样化的视觉世界。

为了扩大视觉词汇表的规模,论文提出了一种名为Vary的方法。Vary方法利用自回归生成技术,通过一个小型解码器(称为"vocabulary network"),从已有的有限词汇表中扩展出更多的词汇。该方法可以根据上下文和语言模型的预测进行表征,并在生成过程中利用了注意力机制。

Vary方法的关键思想是通过生成来扩大词汇表,而非直接增加预训练参数的数量。这使得扩展视觉词汇表的计算和存储成本大大降低,并且可以通过少量参数快速生成大规模的词汇。

论文通过在多个视觉-语言任务上的实验验证了Vary方法的有效性。实验结果表明,使用扩展后的视觉词汇表可以显著提升模型在图像分类、图像生成和视觉问答等任务上的性能。

相关推荐
X54先生(人文科技)3 分钟前
碳硅协同开发篇-ELR诞生记章
人工智能·ai编程·ai写作·程序员创富
小王毕业啦12 分钟前
2010-2024年 上市公司-突破性创新和渐进性创新(数据+代码+文献)
大数据·人工智能·数据挖掘·数据分析·数据统计·社科数据·经管数据
美酒没故事°16 分钟前
手摸手在扣子平台搭建周报智能体[特殊字符]
人工智能·ai
若谷老师27 分钟前
21.WSL中部署gnina分子对接程序ds
linux·人工智能·ubuntu·卷积神经网络·gnina·smina
诗词在线27 分钟前
孟浩然诗作数字化深度实战:诗词在线的意象挖掘、检索优化与多场景部署
大数据·人工智能·算法
冬奇Lab1 小时前
一天一个开源项目(第23篇):PageLM - 开源 AI 教育平台,把学习材料变成互动资源
人工智能·开源
汐汐咯1 小时前
残差块学习笔记
人工智能
式5161 小时前
深度学习常见问题
人工智能·深度学习
天竺鼠不该去劝架1 小时前
RPA 平台选型指南(2026):金智维 vs 来也RPA vs 艺赛旗 vs 阿里云 RPA 深度对比
大数据·数据库·人工智能