Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models

ABSTRACT

现代大规模视觉-语言模型(LVLMs)采用了相同的视觉词汇-CLIP,可以涵盖大多数常见的视觉任务。然而,对于一些需要密集和细粒度视觉感知的特殊视觉任务,例如文档级OCR或图表理解,尤其是在非英语环境中,CLIP风格的词汇可能在分词视觉知识方面效率较低,甚至遇到词汇表外问题。因此,我们提出了一种名为Vary的有效方法,用于扩大LVLMs的视觉词汇。Vary的过程自然地分为两个步骤:生成和整合新的视觉词汇。在第一阶段,我们设计了一个词汇网络以及一个小型的仅解码器的transformer,通过自回归方式生成所需的词汇。接下来,我们通过将新的词汇与原始词汇(CLIP)合并,扩大了原始的视觉词汇,使LVLMs能够快速获得新特征。与流行的BLIP-2、MiniGPT4和LLaVA相比,Vary在保持其原有功能的同时,拥有更出色的细粒度感知和理解能力。具体而言,Vary在新的文档解析功能(OCR或标记转换)上表现出色,在DocVQA中实现了78.2%的ANLS,以及在MMVet中实现了36.2%的成绩。我们的代码将在主页上公开发布。

论文地址:论文
即将开源:主页
开源代码:代码

该论文旨在解决大规模视觉-语言模型(LVLMs)中视觉词汇表规模的限制问题。在传统的视觉-语言模型中,通常使用一个固定大小的视觉词汇表来表示图像的视觉信息。然而,这种固定大小的词汇表可能无法有效地覆盖复杂和多样化的视觉世界。

为了扩大视觉词汇表的规模,论文提出了一种名为Vary的方法。Vary方法利用自回归生成技术,通过一个小型解码器(称为"vocabulary network"),从已有的有限词汇表中扩展出更多的词汇。该方法可以根据上下文和语言模型的预测进行表征,并在生成过程中利用了注意力机制。

Vary方法的关键思想是通过生成来扩大词汇表,而非直接增加预训练参数的数量。这使得扩展视觉词汇表的计算和存储成本大大降低,并且可以通过少量参数快速生成大规模的词汇。

论文通过在多个视觉-语言任务上的实验验证了Vary方法的有效性。实验结果表明,使用扩展后的视觉词汇表可以显著提升模型在图像分类、图像生成和视觉问答等任务上的性能。

相关推荐
PHOSKEY2 分钟前
秒测0.1mm误差?光子精密QM系列闪测仪拯救电脑接口部件组装良率
人工智能·机器学习
love530love2 分钟前
让 ComfyUI 官方 CLI 在 Windows CMD 里也能 Tab 补全 —— 实测与避坑记录
人工智能·windows·python·clink·comfy-cli·命令补全·clickcompletion
Elastic 中国社区官方博客2 分钟前
使用 Elasticsearch 的 Profile API 对比 dense vector 搜索性能
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
jay神3 分钟前
神经网络的调参顺序
人工智能·深度学习·神经网络·科研·模型调参
IE065 分钟前
深度学习系列85:sqlite-ai系列
人工智能·深度学习·sqlite
IT_陈寒5 分钟前
SpringBoot 3.0实战:5个高频踩坑点及性能优化方案,让你的应用吞吐量提升40%
前端·人工智能·后端
yiersansiwu123d6 分钟前
从生成式到智能体:AI的下一站是万物互联的智能协同
人工智能
liulanba9 分钟前
机器学习评估指标详解 - 入门篇
人工智能·机器学习
wenzhangli79 分钟前
2025智能家居创新大会:AI热潮下的冷思考,机遇窗口正在收窄
人工智能
Godspeed Zhao11 分钟前
自动驾驶中的传感器技术80——Sensor Fusion(3)
人工智能·机器学习·自动驾驶