论文阅读: Semantics-guided Triplet Loss

ICCV 2021

Abstract

  • 一个度量学习方法,通过浏览语义引导的局部集合去优化内在深度表示。
  • 一个新颖的特征融合模块能有效利用跨模态特异质特征。

Senantics-guided Triplet Loss

基本假设:

  • 在场景语义分割图像中,目标内部相邻像素拥有同样的深度值,而跨目标边界上深度值变化很大。

方法

  • 将语义图像分割成KxK大小的块,stride为1。在每一个块,中心点为anchor,与anchor有相同标签的点为positive 像素 P i + P_i^+ Pi+,反之为Negative像素 P i − P_i^- Pi−。

  • 如果 ∣ P i − ∣ |P_i^-| ∣Pi−∣=0,则 P i P_i Pi位于目标内部,若 ∣ P i − ∣ |P_i^-| ∣Pi−∣和 ∣ P i + ∣ |P_i^+| ∣Pi+∣都大与0,意味着 P i P_i Pi跨域了边界。

  • 对正负距离的定义:

  • 目的在于减少anchor与正样本的距离增加与负样本的距离。

  • 然而目标间的深度变化并非必然的远,因此当负距离超过正距离一定程度,设置一个超参:

  • semantics-guided triplet los L S G T L_{SGT} LSGT是 L p i L_{p_i} Lpi的均值,但只包含满足条件: ∣ P i − ∣ |P_i^-| ∣Pi−∣和 ∣ P i + ∣ |P_i^+| ∣Pi+∣都大于T。

(To be continued)

相关推荐
s1ckrain21 小时前
【论文阅读】VARGPT-v1.1
论文阅读·多模态大模型·统一生成模型
Catching Star1 天前
【论文笔记】【强化微调】Vision-R1:首个针对多模态 LLM 制定的强化微调方法,以 7B 比肩 70B
论文阅读·强化微调
王上上1 天前
【论文阅读41】-LSTM-PINN预测人口
论文阅读·人工智能·lstm
s1ckrain2 天前
【论文阅读】DeepEyes: Incentivizing “Thinking with Images” via Reinforcement Learning
论文阅读·强化学习·多模态大模型·vlm
张较瘦_2 天前
[论文阅读] 人工智能 + 软件工程 | 需求获取访谈中LLM生成跟进问题研究:来龙去脉与创新突破
论文阅读·人工智能
北京地铁1号线3 天前
GPT-2论文阅读:Language Models are Unsupervised Multitask Learners
论文阅读·gpt·语言模型
张较瘦_3 天前
[论文阅读] 人工智能 + 软件工程 | 软件架构中自然问题主动辅助研究:从挑战到解决方案
论文阅读·人工智能·软件工程
有Li3 天前
通过具有一致性嵌入的大语言模型实现端到端乳腺癌放射治疗计划制定|文献速递-最新论文分享
论文阅读·深度学习·分类·医学生
张较瘦_4 天前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习
selia10784 天前
[论文阅读] Neural Architecture Search: Insights from 1000 Papers
论文阅读