[概率论]四小时不挂猴博士

贝叶斯公式是什么

贝叶斯公式是概率论中的一个重要定理,用于计算在已知一些先验信息的情况下,更新对事件发生概率的估计。贝叶斯公式的表达式如下:

P(A|B) = P(B|A) * P(A) / P(B)

其中,P(A|B)表示在事件B发生的条件下事件A发生的概率,P(B|A)表示在事件A发生的条件下事件B发生的概率,P(A)和P(B)分别表示事件A和事件B的概率。

贝叶斯公式的应用非常广泛,特别是在统计学、机器学习和人工智能领域。它可以帮助我们根据新的证据更新对事件发生概率的估计,是一种非常有用的推理工具。

如何区分贝叶斯全概率公式和条件概率

贝叶斯全概率公式和条件概率是概率论中两个不同的概念。

贝叶斯全概率公式是指在已知事件A的情况下,求事件B的概率。它的公式为P(B) = Σ P(B|A)P(A),其中P(B|A)表示在事件A发生的条件下,事件B发生的概率,P(A)表示事件A的概率。这个公式可以用来计算在不同的条件下事件B发生的概率。

条件概率是指在已知事件A的情况下,事件B发生的概率。它的公式为P(B|A) = P(A∩B) / P(A),其中P(A∩B)表示事件A和事件B同时发生的概率,P(A)表示事件A的概率。条件概率可以用来计算在已知条件下事件B发生的概率。

因此,贝叶斯全概率公式是用来计算在不同条件下事件B发生的概率,而条件概率是用来计算在已知条件下事件B发生的概率。两者的区别在于计算的角度和应用的场景。

加不加等号,结果不变!

相关推荐
大江东去浪淘尽千古风流人物2 天前
【LingBot-Depth】Masked Depth Modeling for Spatial Perception
人工智能·算法·机器学习·概率论
闪闪发亮的小星星3 天前
主旋参数定义
算法·机器学习·概率论
辰尘_星启5 天前
[最优控制]MPC模型预测控制
线性代数·机器学习·机器人·概率论·控制·现代控制
passxgx6 天前
12.1 均值、方差与概率
算法·均值算法·概率论
Cathy Bryant6 天前
softmax函数与logits
笔记·神经网络·机器学习·概率论·信息与通信
墨上烟雨6 天前
古典概型与几何概型
概率论
点云SLAM6 天前
似然函数(Likelihood Function)和最大似然估计
算法·机器学习·概率论·数理统计·最大似然估计·似然函数·概率分布
Figo_Cheung6 天前
Figo几何基础论:基于集合几何化的统一理论框架与哲学意涵——首次提出“几何化诱导的全息原理”
算法·机器学习·概率论·迭代加深
木非哲7 天前
AB实验的关键认知(十四)实验复盘与总结
概率论·abtest
无风听海7 天前
负对数似然函数详解
概率论