无人机低空视角:针对人群密集场景的检测、跟踪和计数技术

无人机低空视角:针对人群密集场景的检测、跟踪和计数技术

DroneCrowd

Paper

无人机在人群中的检测、跟踪和计数:基准研究

简介

本文提出了一种时空多尺度注意力网络(STANet),用于解决由无人机捕捉的视频剪辑中的密集人群的密度图估计、定位和跟踪问题,涵盖了各种人群密度、视角和飞行高度。我们的STANet方法通过聚合顺序帧中的多尺度特征图来利用时间一致性,然后同时预测密度图、定位目标并在人群中关联它们。我们设计了一个由密度图损失、定位损失和关联损失三个项组成的多任务损失函数,并采用逐步应用注意力模块的粗到细过程,以强化网络对判别性时空特征的利用,以提高性能。整个网络以端到端的方式进行训练。在情景中使用非最大抑制和最小代价流框架生成目标的轨迹。由于现有的人群计数数据集主要关注于静态摄像机中的人群计数,而不是无人机上的密度图估计、计数和跟踪,因此我们收集了一个新的大规模基于无人机的数据集,称为DroneCrowd,包括112个视频剪辑,共33600个高分辨率帧(即1920x1080),捕捉了70个不同情景。通过大量的努力,我们的数据集提供了20800个人的轨迹,480万个头部标注以及序列中的多个视频级属性。我们在两个具有挑战性的公共数据集(上海科技和UCF-QNRF)以及我们的DroneCrowd上进行了广泛的实验证明STANet在性能上优于现有技术水平。

数据集

ECCV2020挑战

VisDrone 2020人群计数挑战要求参与算法对每个帧中的人数进行计数。挑战将提供112个具有挑战性的序列,包括82个用于训练的视频序列(总共2420帧)和30个用于测试的序列(总共900帧),可在下载页面上获得。我们在每个视频帧中用点手动标注人物。

DroneCrowd(1.03 GB):百度云(提取码:h0j8)| 谷歌云

DroneCrowd(完整版)

这个完整版本包括112个视频剪辑,共33600个高分辨率帧(即1920x1080),捕捉了70个不同的场景。通过大量的努力,我们的数据集提供了20800个人的轨迹,480万个头部标注以及序列中的多个视频级属性。

DroneCrowd 百度云(提取码:ml1u)| 谷歌云

相关推荐
睿创咨询10 分钟前
科技与商业动态简报
人工智能·科技·ipd·商业
科技在线10 分钟前
科技赋能建筑新未来:中建海龙模块化建筑产品入选中国建筑首批产业化推广产品
大数据·人工智能
HED20 分钟前
用扣子快速手撸人生中第一个AI智能应用!
前端·人工智能
极小狐22 分钟前
极狐GitLab 如何 cherry-pick 变更?
人工智能·git·机器学习·gitlab
沛沛老爹26 分钟前
从线性到非线性:简单聊聊神经网络的常见三大激活函数
人工智能·深度学习·神经网络·激活函数·relu·sigmoid·tanh
0x21135 分钟前
[论文阅读]ReAct: Synergizing Reasoning and Acting in Language Models
人工智能·语言模型·自然语言处理
mucheni1 小时前
迅为iTOP-RK3576开发板/核心板6TOPS超强算力NPU适用于ARM PC、边缘计算、个人移动互联网设备及其他多媒体产品
arm开发·人工智能·边缘计算
Jamence1 小时前
多模态大语言模型arxiv论文略读(三十六)
人工智能·语言模型·自然语言处理
猿饵块1 小时前
opencv--图像变换
人工智能·opencv·计算机视觉
LucianaiB1 小时前
【金仓数据库征文】_AI 赋能数据库运维:金仓KES的智能化未来
运维·数据库·人工智能·金仓数据库 2025 征文·数据库平替用金仓