中文自然语言处理库(SnowNLP)的简单使用

snownlp 是一个简单易用的 Python 库,专为处理中文文本而设计。它基于自然语言处理技术,提供了多种功能,包括分词、词性标注、情感分析、文本转换(简繁转换)等。这个库的核心优势在于对中文文本的处理能力,尤其是情感分析功能。

主要功能

  1. 分词(Tokenization):将长文本划分为单独的词汇。

  2. 词性标注(Part-of-Speech Tagging):标注文本中每个词汇的词性,如名词、动词等。

  3. 情感分析(Sentiment Analysis):判断文本的情感倾向是正面还是负面。

  4. 文本转换(Text Conversion):实现简体和繁体中文之间的转换。

  5. 关键词提取(Keywords Extraction):提取文本中的关键词。

  6. 摘要生成(Summarization):从文本中提取关键句生成摘要。

  7. 短语提取(Phrase Extraction):从文本中提取短语。

安装

snownlp 可以通过 pip 安装:

python 复制代码
pip install snownlp

示例

以下是使用snownlp进行各种处理的一些基本示例:

分词
python 复制代码
from snownlp import SnowNLP

text = """
中新社北京2023年12月29日电(记者 刘育英)中国工信部12月29日发布的《工业和信息化部等八部门关于加快传统制造业转型升级的指导意见》提出,到2027年,中国传统制造业在全球产业分工中的地位和竞争力进一步巩固增强。传统制造业是中国制造业的主体,石化化工、钢铁、有色、建材、机械、汽车、轻工、纺织等传统制造业增加值占中国全部制造业的比重近80%。但中国传统制造业"大而不强""全而不精"问题仍然突出,低端供给过剩和高端供给不足并存,创新能力不强,产业基础不牢,资源约束趋紧,要素成本上升,巩固提升竞争优势面临较大挑战。指导意见提出,到2027年,传统制造业高端化、智能化、绿色化、融合化发展水平明显提升,有效支撑制造业比重保持基本稳定,在全球产业分工中的地位和竞争力进一步巩固增强。工业企业数字化研发设计工具普及率、关键工序数控化率分别超过90%、70%,工业能耗强度和二氧化碳排放强度持续下降,万元人民币工业增加值用水量较2023年下降13%左右,大宗工业固体废物综合利用率超过57%。
"""
#分词
s = SnowNLP(text)
print(s.words)
词性标注
python 复制代码
tags = [word.tag for word in SnowNLP(text).tags]
print(tags)
情感分析
python 复制代码
#情感分析
sentiment = SnowNLP(text).sentiments
print(sentiment)

s.sentimentsSnowNLP库中用于情感分析的功能。这个情感分数是一个介于0到1之间的浮点数,用于表示文本的情感倾向。分数越接近1,表示文本的情感倾向越正面;分数越接近0,表示文本的情感倾向越负面。

文本转换(简繁转换)
python 复制代码
#简繁转化
traditional = SnowNLP(text).han
print(traditional)

还是简体,这个功能不一定有效。。。

关键词提取
python 复制代码
#提取关键词
keywords = SnowNLP(text).keywords(limit=5)
print(keywords)
摘要生成
python 复制代码
#总结摘要
summary = SnowNLP(text).summary(3)# 提取3个句子作为摘要
print(summary)

提取关键词和生成摘要的效果还不错。

依存句法分析

分析文本中词语之间的依存关系。

python 复制代码
s = SnowNLP(text)
dependency = s.tags  # 获取依存关系
for item in dependency:
    print(item)

就是词性标注。没啥区别。

文本分类

对文本进行分类(需要自行训练模型)。

python 复制代码
#文本分类:对文本进行分类(需要自行训练模型)。

# 首先需要有一些标注好的数据进行训练
# 例如:snownlp.SnowNLP([[words, tags], ...])
# 然后使用save方法保存训练好的模型

# 首先需要有一些标注好的数据进行训练

转换成拼音

将中文文本转换成拼音。

python 复制代码
s = SnowNLP(text)
pinyin = s.pinyin
print(pinyin)

这个功能还挺实用的。

词频统计

对文本中的词频进行统计。

python 复制代码
s = SnowNLP(text)
words_count = s.tf
print(words_count)

这个...不是词频是字频吧


注意事项

  • snownlp 对于情感分析提供了预训练模型,但这个模型可能不适用于所有类型的文本。对于特定领域或特定文体的文本,可能需要额外的训练来优化结果。
  • 库的准确性在很大程度上依赖于数据质量和数据量,对于复杂或特殊的文本内容,可能需要进一步的自定义处理或训练。

snownlp 是处理中文文本的强大工具,但它的功能和准确性可能会受限于所使用的数据和特定应用场景。


虽然代码是gpt写的,但是我都运行了的,是可以跑的,这篇算是这个库的简单使用。其中的一些功能,词频统计,关键词提取,情感分析,生成摘要,转化拼音。还是很实用的功能。以后会有场景用得上的。


创作不易,看官觉得写得还不错的话点个关注和赞吧,本人会持续更新python数据分析领域的代码文章~(需要定制代码可私信)

相关推荐
mqiqe22 分钟前
Python MySQL通过Binlog 获取变更记录 恢复数据
开发语言·python·mysql
AttackingLin24 分钟前
2024强网杯--babyheap house of apple2解法
linux·开发语言·python
哭泣的眼泪40838 分钟前
解析粗糙度仪在工业制造及材料科学和建筑工程领域的重要性
python·算法·django·virtualenv·pygame
珠海新立电子科技有限公司1 小时前
FPC柔性线路板与智能生活的融合
人工智能·生活·制造
湫ccc1 小时前
《Python基础》之基本数据类型
开发语言·python
IT古董1 小时前
【机器学习】机器学习中用到的高等数学知识-8. 图论 (Graph Theory)
人工智能·机器学习·图论
曼城周杰伦1 小时前
自然语言处理:第六十三章 阿里Qwen2 & 2.5系列
人工智能·阿里云·语言模型·自然语言处理·chatgpt·nlp·gpt-3
余炜yw2 小时前
【LSTM实战】跨越千年,赋诗成文:用LSTM重现唐诗的韵律与情感
人工智能·rnn·深度学习
drebander2 小时前
使用 Java Stream 优雅实现List 转化为Map<key,Map<key,value>>
java·python·list
莫叫石榴姐2 小时前
数据科学与SQL:组距分组分析 | 区间分布问题
大数据·人工智能·sql·深度学习·算法·机器学习·数据挖掘