写在前面
之前ChatGLM推出3了,奈何自身条件不允许,CPU运行半天出不来结果,索性放弃。幸好这次拿到了朋友的机器,虽然显存不高,但是双卡共16G也满足运行的最低要求,于是乎准备研究一波,尝试双卡部署一下。
之前已经装好了环境,参考:使用Tesla P4 双卡配置torch机器学习环境
环境配置
关于ChatGLM3不过多介绍了,支持工具回调,支持代码执行,是我挺喜欢的一个开源模型,这次直接给出了技术文档 lslfd0slxc.feishu.cn/wiki/HIj5wV...(文档内容不做截图因为有水印)
先下载源码
bash
git clone https://github.com/THUDM/ChatGLM3.git
然后装一下requirements.txt,因为之前已经装好了torch,所以注释掉
bash
pip3 install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
太慢了,加上国内源
随后,基础环境装好了。
ChatGLM3给了多种运行方式,其中包含基础demo(basic_demo目录下)和综合demo(包含工具执行,代码解释的综合性demo,在composite_demo)
这里我先以方便双卡运行为主,运行basic_demo
关于综合Demo可以参考,本篇不提及:github.com/THUDM/ChatG...
题外话:运行web_demo.py发现丢了个mdtex2html的库,装一下
bash
pip3 install mdtex2html -i https://pypi.tuna.tsinghua.edu.cn/simple
项目运行
因为网络问题无法访问到huggingface,所以我准备使用魔塔社区的模型仓库来下载与逆行,要简单修改一下来源,通过transformers库中的方法找的是huggingface的模型,
www.modelscope.cn/models/Zhip...
简单修改为 modelscope的方法,先下载modelscope库
bash
pip3 install modelscope -i https://pypi.tuna.tsinghua.edu.cn/simple
然后如下是修改后的 1-20行代码
python
import os
from modelscope import AutoModel, AutoTokenizer
import gradio as gr
import mdtex2html
from utils import load_model_on_gpus
import torch
MODEL_PATH = os.environ.get('MODEL_PATH', 'ZhipuAI/chatglm3-6b')
TOKENIZER_PATH = os.environ.get("TOKENIZER_PATH", MODEL_PATH)
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH, trust_remote_code=True)
if 'cuda' in DEVICE: # AMD, NVIDIA GPU can use Half Precision
model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True).to(DEVICE).eval()
else: # CPU, Intel GPU and other GPU can use Float16 Precision Only
model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True).float().to(DEVICE).eval()
# 多显卡支持,使用下面两行代替上面一行,将num_gpus改为你实际的显卡数量
from utils import load_model_on_gpus
model = load_model_on_gpus("ZhipuAI/chatglm3-6b", num_gpus=2)
如图,总共改了三个地方:
- transformers改为modelscope
- 模型的仓库由THUDM/chatglm3-6b 修改为ZhipuAI/chatglm3-6b
- 打开了多显卡支持的注释,注释了原来的mode加载方式,同时修改仓库名称
同时,因为load_model_on_gpus函数是utils.py中实现的,我们也需要把utils.py中的transformers改为modelscope,如图所示
然后执行,接下来就是漫长的等待
然后就正常执行了,这个时候我们可以再开一个窗口执行如下命令来查看显卡的情况
bash
watch -n 1 nvidia-smi
可以看到,已经分配到两个卡了,完美运行
使用
浏览器访问服务器地址
很快啊,几秒钟就回复了,为啥我要从这里看呢?
因为前端报错了,估计是在插入DOM节点的时候出问题了。疑似是gradio的问题(个人猜测)。
总结
虽然最后的结果展示有点小失败,但是整体上是成功的,我完全可以自己写个web,通过接口的方式进行调用。
踩坑结果:本次终于可以用上ChatGLM3,同时搞定了多卡执行,学到了很多。
终于凑足了能低配完美运行的资源了,这可比之前我mps推理的时候,20分钟回复你好强多了。