python实现平滑线性滤波器——数字图像处理

原理:

平滑线性滤波器是一种在图像处理中广泛使用的工具,主要用于降低图像噪声或模糊细节。这些滤波器的核心原理基于对图像中每个像素及其邻域像素的线性组合。

邻域平均:

平滑线性滤波器通过对目标像素及其周围邻域像素的强度值取平均来工作。这个操作使得图像中的每个像素值变得更加接近其邻域的平均值。

滤波器核(Kernel):

滤波器通过一个称为"核"或"掩膜"的小窗口来应用。这个核定义了邻域的大小和形状,通常是一个小的、方形的矩阵。

核中的每个值(权重)决定了相应像素在平均过程中的重要性。
卷积操作

平滑过程是通过卷积操作实现的,即将核在图像上滑动,并在每个位置上应用加权平均。

对于图像中的每个像素,核覆盖的区域内的像素值与核的相应权重相乘,然后求和得到新的像素值。

常见的平滑线性滤波器
均值滤波器:

最简单的平滑线性滤波器是均值滤波器,它使用的核具有相等的权重,即所有邻域像素的权重相同。

高斯滤波器:

高斯滤波器使用的核基于高斯函数,它为中心像素赋予更高的权重,而远离中心的像素权重较低。

这种类型的滤波器在保留边缘信息的同时,对噪声的平滑效果更好。
应用

平滑线性滤波器主要用于去噪和图像模糊化。在去除噪声时,它们可以帮助减少图像中随机的颜色波动。但是,这种平滑也可能导致图像细节的损失,特别是在边缘区域。因此,选择合适的核大小和类型对于平衡去噪和保持图像细节非常重要。

使用python实现下列过程

提示

采用的平滑模板大小分别为3,5,9,15,35,大小为3的模板

其余大小模板类似。可以写一个函数实现图像与模板卷积(相关)的过程,步骤包括:根据模板大小为图像填充0边界;双层for循环遍历图像的每个像素点,每次取与模板大小相同的图像块与模板相乘并求和,np.multiply可以实现矩阵逐元素相乘,np.sum实现矩阵求和。

python代码

python 复制代码
import cv2
import numpy as np
from matplotlib import pyplot as plt


def correl2d(img, window):
    m = window.shape[0]
    n = window.shape[1]

    # 图像边界填0扩展
    img_border = np.zeros((img.shape[0] + m - 1, img.shape[1] + n - 1))
    img_border[(m - 1) // 2:img.shape[0] + (m - 1) // 2, (n - 1) // 2:img.shape[1] + (n - 1) // 2] = img
    img_result = np.zeros(img.shape)
    for i in range(img.shape[0]):
        for j in range(img.shape[1]):
            temp = img_border[i:i + m, j:j + n]
            img_result[i, j] = np.sum(np.multiply(temp, window))
    return img_result


img = cv2.imread('Fig0333.tif', 0)

img_list = [img]
img_name_list = ['original']
size = [3, 5, 9, 15, 35]
for m in size:
    window = np.ones((m, m)) / (m ** 2)
    img_result = correl2d(img, window)
    img_list.append(img_result)
    img_name_list.append('m=' + str(m))

_, axs = plt.subplots(2, 3)

for i in range(2):
    for j in range(3):
        axs[i, j].imshow(img_list[i * 3 + j], cmap='gray')
        axs[i, j].set_title(img_name_list[i * 3 + j])
        axs[i, j].axis('off')

plt.savefig('box_filter.jpg')
plt.show()

结果展示

相关推荐
熊文豪1 分钟前
借助 AI Ping 的 Kimi-K2-Thinking 与 ClaudeCode 的加解密工具开发
人工智能·aiping
阿杰学AI2 分钟前
AI核心知识45——大语言模型之PPO(简洁且通俗易懂版)
人工智能·ai·语言模型·自然语言处理·aigc·ppo·近端策略优化
da_vinci_x5 分钟前
PS 神经滤镜:一张夏天变雪景?场景美术的“季节魔术”
人工智能·3d·aigc·建模·游戏美术·pbr·场景美术
CoovallyAIHub6 分钟前
南京理工大学联手百度、商汤科技等团队推出Artemis:用结构化视觉推理革新多模态感知
深度学习·算法·计算机视觉
深蓝易网7 分钟前
MES系统如何帮助企业实现产品质量的全过程追溯
大数据·人工智能
free-elcmacom7 分钟前
机器学习进阶<7>人脸识别特征锚点Python实现
人工智能·python·机器学习·rbfn
天才少女爱迪生8 分钟前
图像序列预测有什么算法方案
人工智能·python·深度学习·算法
计算机学姐8 分钟前
基于Python的高校后勤报修系统【2026最新】
开发语言·vue.js·后端·python·mysql·django·flask
乐迪信息10 分钟前
乐迪信息:AI摄像机+反光衣佩戴检测,保障智慧煤矿人员作业安全
大数据·运维·人工智能·物联网·安全
胖墩会武术10 分钟前
【PyTorch项目实战】Ultralytics YOLO模型本地部署(训练 + 测试 + 推理)
人工智能·pytorch·yolo