【机器学习】卷积神经网络(六)-计算机视觉应用

人脸检测与人脸识别是两个相关但不同的概念。人脸检测是指在一幅图像或视频中找出所有人脸的位置和大小,通常用一个矩形框来表示。人脸识别是指根据人脸的特征,判断人脸的身份或属性,例如姓名、性别、年龄、表情等。

人脸检测是人脸识别的前提和基础,因为只有找到人脸,才能对人脸进行分析和识别。人脸检测和人脸识别都是人工智能领域的重要研究方向,有着广泛的应用场景,例如安防、社交、娱乐、医疗等。

7.4 人脸识别

人脸识别算法

人脸识别算法是指利用计算机技术,根据人脸的特征,对人脸进行分析和识别的一系列算法。人脸识别算法通常包括以下几个步骤:

  • 人脸检测:在一幅图像或视频中找出所有人脸的位置和大小,通常用一个矩形框来表示。

  • 人脸对齐:对检测到的人脸进行旋转、缩放、裁剪等操作,使人脸的位置、大小、角度等统一标准化。

  • 人脸特征提取:从对齐后的人脸图像中提取人脸的特征,例如眼睛、鼻子、嘴巴等,或者使用深度学习方法,将人脸图像转换为一个高维的特征向量。

  • 人脸特征比对:根据人脸的特征,计算两个人脸的相似度,或者使用分类器,将人脸的特征向量映射为一个类别标签。

人脸识别算法的发展经历了几个阶段,从传统的基于几何特征的方法,到基于统计学习的方法,再到基于深度学习的方法。目前,基于深度学习的方法已经成为人脸识别算法的主流,因为它们具有更高的准确率和鲁棒性,能够处理各种复杂的情况,例如光照、姿态、表情、遮挡、年龄等变化。

人脸识别算法的应用场景非常广泛,例如安防、社交、娱乐、医疗、教育等。人脸识别算法的研究仍在不断进步,希望能为人类社会带来更多的便利和价值。😊

LBP特征与人脸识别中卷积神经网络学习的特征

你能给我推荐一些用于人脸识别的开源库吗?

DeepFace模型

详述DeepFace模型工作流程

DeepFace模型的优缺点是什么?

DeepFace模型的网络结构

DeepID系列

FaceNet网络

FaceNet模型从技术上讲有什么创新

7.5 图像分割

图像分割方法(分水岭算法、区域生长、图切割、活动轮廓、水平集算法)

全卷积网络实现图像的语义分割

deeplab 图像分割

deeplab是一种用于图像分割的深度学习模型,它由谷歌的研究人员于2015年提出,可以实现高效和准确的图像分割性能。deeplab的主要贡献有以下几点:

  • 提出了一种基于空洞卷积的方法,可以在保持特征图的分辨率的同时,增加卷积核的感受野,提高特征的语义信息。

  • 提出了一种基于条件随机场的方法,可以在特征图的基础上,利用像素之间的上下文关系,优化分割的边缘和细节。

  • 提出了一种基于多尺度和多分支的方法,可以利用不同尺度和不同深度的特征,提高分割的鲁棒性和准确率。

segnet 语义分割网络

有哪些其他图像分割算法?

有哪些其他图像分割神经网络?

人脸识别与图像分割用到的卷积神经网络

参考网址:

https://github.com/serengil/deepface Python 的轻量级人脸识别和面部属性分析(年龄、性别、情绪和种族)库

https://en.wikipedia.org/wiki/DeepFace.

https://arxiv.org/abs/1503.03832 FaceNet:用于人脸识别和聚类的统一嵌入

相关推荐
飞哥数智坊30 分钟前
别再组团队了,AI时代一个人就能创业
人工智能·创业
严文文-Chris1 小时前
GPT5的Test-time compute(测试时计算)是什么?
人工智能
Java中文社群1 小时前
白嫖ClaudeCode秘籍大公开!超详细
人工智能·后端
MicrosoftReactor1 小时前
技术速递|使用 AI 应用模板扩展创建一个 .NET AI 应用与自定义数据进行对话
人工智能·.net
boooo_hhh2 小时前
第41周——人脸图像生成
机器学习
迪菲赫尔曼2 小时前
大模型入门实战 | 基于 YOLO 数据集微调 Qwen2.5-VL-3B-Instruct 的目标检测任务
人工智能·yolo·目标检测·大模型·微调·新手入门·qwen2.5
MARS_AI_3 小时前
云蝠智能 Voice Agent:多语言交互时代的AI智能语音呼叫
人工智能·自然语言处理·交互·语音识别
THMAIL3 小时前
深度剖析Spring AI源码(七):化繁为简,Spring Boot自动配置的实现之秘
人工智能·spring boot·spring
鲸鱼24013 小时前
线性回归笔记
机器学习·平面·线性回归