【机器学习】卷积神经网络(六)-计算机视觉应用

人脸检测与人脸识别是两个相关但不同的概念。人脸检测是指在一幅图像或视频中找出所有人脸的位置和大小,通常用一个矩形框来表示。人脸识别是指根据人脸的特征,判断人脸的身份或属性,例如姓名、性别、年龄、表情等。

人脸检测是人脸识别的前提和基础,因为只有找到人脸,才能对人脸进行分析和识别。人脸检测和人脸识别都是人工智能领域的重要研究方向,有着广泛的应用场景,例如安防、社交、娱乐、医疗等。

7.4 人脸识别

人脸识别算法

人脸识别算法是指利用计算机技术,根据人脸的特征,对人脸进行分析和识别的一系列算法。人脸识别算法通常包括以下几个步骤:

  • 人脸检测:在一幅图像或视频中找出所有人脸的位置和大小,通常用一个矩形框来表示。

  • 人脸对齐:对检测到的人脸进行旋转、缩放、裁剪等操作,使人脸的位置、大小、角度等统一标准化。

  • 人脸特征提取:从对齐后的人脸图像中提取人脸的特征,例如眼睛、鼻子、嘴巴等,或者使用深度学习方法,将人脸图像转换为一个高维的特征向量。

  • 人脸特征比对:根据人脸的特征,计算两个人脸的相似度,或者使用分类器,将人脸的特征向量映射为一个类别标签。

人脸识别算法的发展经历了几个阶段,从传统的基于几何特征的方法,到基于统计学习的方法,再到基于深度学习的方法。目前,基于深度学习的方法已经成为人脸识别算法的主流,因为它们具有更高的准确率和鲁棒性,能够处理各种复杂的情况,例如光照、姿态、表情、遮挡、年龄等变化。

人脸识别算法的应用场景非常广泛,例如安防、社交、娱乐、医疗、教育等。人脸识别算法的研究仍在不断进步,希望能为人类社会带来更多的便利和价值。😊

LBP特征与人脸识别中卷积神经网络学习的特征

你能给我推荐一些用于人脸识别的开源库吗?

DeepFace模型

详述DeepFace模型工作流程

DeepFace模型的优缺点是什么?

DeepFace模型的网络结构

DeepID系列

FaceNet网络

FaceNet模型从技术上讲有什么创新

7.5 图像分割

图像分割方法(分水岭算法、区域生长、图切割、活动轮廓、水平集算法)

全卷积网络实现图像的语义分割

deeplab 图像分割

deeplab是一种用于图像分割的深度学习模型,它由谷歌的研究人员于2015年提出,可以实现高效和准确的图像分割性能。deeplab的主要贡献有以下几点:

  • 提出了一种基于空洞卷积的方法,可以在保持特征图的分辨率的同时,增加卷积核的感受野,提高特征的语义信息。

  • 提出了一种基于条件随机场的方法,可以在特征图的基础上,利用像素之间的上下文关系,优化分割的边缘和细节。

  • 提出了一种基于多尺度和多分支的方法,可以利用不同尺度和不同深度的特征,提高分割的鲁棒性和准确率。

segnet 语义分割网络

有哪些其他图像分割算法?

有哪些其他图像分割神经网络?

人脸识别与图像分割用到的卷积神经网络

参考网址:

https://github.com/serengil/deepface Python 的轻量级人脸识别和面部属性分析(年龄、性别、情绪和种族)库

https://en.wikipedia.org/wiki/DeepFace.

https://arxiv.org/abs/1503.03832 FaceNet:用于人脸识别和聚类的统一嵌入

相关推荐
LDG_AGI4 分钟前
【推荐系统】深度学习训练框架(九):推荐系统与LLM在Dataset、Tokenizer阶段的异同
人工智能·深度学习·算法·机器学习·推荐算法
智谱开放平台5 分钟前
让 AI 真正懂仓库:如何用 CLAUDE.md 将 Claude Code 的工作效率发挥到极致
人工智能·claude
糯米酒6 分钟前
不想使用docker部署n8n的看过来,你可以这样做
人工智能
roman_日积跬步-终至千里8 分钟前
【模式识别与机器学习(17)】聚类分析教程【2】:高级方法与离群点分析
人工智能·机器学习·支持向量机
小殊小殊9 分钟前
重磅!DeepSeek发布V3.2系列模型!
论文阅读·人工智能·算法
丝斯201115 分钟前
AI学习笔记整理(19)—— AI核心技术(深度学习3)
人工智能·笔记·学习
自然语15 分钟前
深度学习时代结束了,2025年开始只剩下轮廓
数据结构·人工智能·深度学习·学习·算法
dagouaofei17 分钟前
年终总结PPT用AI最快生成
人工智能·python·powerpoint
、、、、南山小雨、、、、18 分钟前
云主机GPU pyTorch部署
人工智能·pytorch·python
让学习成为一种生活方式18 分钟前
基因组结构注释实战案例1--随笔14
人工智能·算法·机器学习