jetson-ffmpeg对视频硬编解码实测记录

前言

在上篇:在jetson中调用NVENC与NVDEC模块进行硬编解码中我们已经实现了调用硬编解码,那么在这篇文章中,我们将详细记录如何在Jetson平台上对FFmpeg实际测试对视频进行硬编解码处理。

实测过程

在这里我们上传一段视频进行硬解码测试并使用非硬解码处理,视频信息如下表所示:

视频信息

参数 数据
大小 266MB
时长 00:39:07
帧宽度 854
帧高度 480
数据速率 769kbps
总比特率 941kbps
帧速率 30.00帧/秒

在jetson设备中我们区别与在win中调用cuda加速那样 -cv:h264_cuvid ,在jetson中是使用 -c:v h264_nvmpi 进行的调用硬编解码操作,这里的硬编解码不占用GPU的计算单元,属于单独的计算单元。

ini 复制代码
import os
import time

input_file = "input.mp4"
output_file = "output.mp4"
t1 = time.time()
# command_gpu = f"ffmpeg -c:v h264_nvmpi -i {input_file} -c:v h264_nvmpi {output_file}"
command_cpu = f"ffmpeg -c:v h264 -i {input_file} -c:v h264 {output_file}"

os.system(command_cpu)
print(time.time() - t1)

分别运行上述代码中的cpugpu部分代码,对其运行过程中的核心信息具有差异性的部分截图如下所示。我们可以看出二者在耗时方面的确是有一些差异。具体原因后续再逐步分析。

log信息截图:

jtop信息截图:

总结

我们通过一个对视频进行转解码的操作指令分别进行实验,可以得到在时间消耗上二者存在差异,在资源的消耗方面也存在差异。由于这里的ffmpeg是已经由jetson-ffmpeg和ffmpeg联合编译得到的,所以在编码阶段二者都调用了NVENC部分,或许这部分不够严谨。

相关推荐
数据智能老司机3 小时前
精通 Python 设计模式——分布式系统模式
python·设计模式·架构
数据智能老司机4 小时前
精通 Python 设计模式——并发与异步模式
python·设计模式·编程语言
数据智能老司机4 小时前
精通 Python 设计模式——测试模式
python·设计模式·架构
数据智能老司机4 小时前
精通 Python 设计模式——性能模式
python·设计模式·架构
c8i5 小时前
drf初步梳理
python·django
每日AI新事件5 小时前
python的异步函数
python
这里有鱼汤6 小时前
miniQMT下载历史行情数据太慢怎么办?一招提速10倍!
前端·python
databook15 小时前
Manim实现脉冲闪烁特效
后端·python·动效
程序设计实验室15 小时前
2025年了,在 Django 之外,Python Web 框架还能怎么选?
python
倔强青铜三17 小时前
苦练Python第46天:文件写入与上下文管理器
人工智能·python·面试