【CE314】Computer Science NLP

Deadline: Please follow deadline on FASER

Build a text classifier on the IMDB sentiment classification dataset, you can use any classification method, but you must training your model on the first 40000 instances and testing your model on the last 10000 instances. The IMDB dataset will be uploaded on the moodle page for you to download.

Your code should include:

1: Read the file, incorporate the instances into the training set and testing set.

2: Pre-processing the text, you can choose whether you need stemming, removing stop words, removing non-alphabetical words. (Not all classification models need this step, it is OK if you think your model can perform better without this step, and you can give some justification in the report.)

3: Analysing the feature of the training set, report the linguistic features of the training dataset.

4: Build a text classification model, train your model on the training set and test your model on the test set.

5: Summarize the performance of your model (You can gain additional marks if you have some graph visualization).

6: (Optional) You can speculate how you can improve your works based on your proposed model.

After you build such a model and test on the test set, you should write a report (no longer than three pages in A4, with Arial 11 fonts) to summarize your work.

(You can use the existing algorithms on github or kaggle, but you must not directly copy and paste their code!

However, you are not allowed to use the Naïve Bayes algorithm and VADER classifier, which practiced in Lab 4)

Suggestion: some bonus points:

Have necessary comments on your code

Have proper reference on your report

Have graph visualization on your report

Investigate more evaluation methods, like not only show the P R F score, but also run multiple times and show the standard derivation on P R F (I am sure you can find more evaluation methods.)

Write your report like a mini-conference paper (you can learn from this paper:

  • Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. 2016. Hierarchical Attention Networks for Document Classification. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies , pages 1480--1489, San Diego, California. Association for Computational Linguistics.
相关推荐
兔兔爱学习兔兔爱学习24 分钟前
2.神经网络基础
人工智能·深度学习·神经网络
_codemonster42 分钟前
深度学习实战(基于pytroch)系列(三十五)循环神经网络的从零开始实现
人工智能·rnn·深度学习
【建模先锋】1 小时前
基于多尺度卷积神经网络(MSCNN-1D)的轴承信号故障诊断模型
人工智能·神经网络·cnn·故障诊断·轴承故障诊断·西储大学轴承数据集
海棠AI实验室1 小时前
图书馆版 RAG 系统:从馆藏到知识问答的一条完整链路
人工智能·rag·图书馆ai·知识服务
Coovally AI模型快速验证2 小时前
去噪扩散模型,根本不去噪?何恺明新论文回归「去噪」本质
人工智能·深度学习·算法·机器学习·计算机视觉·数据挖掘·回归
歌_顿2 小时前
attention、transform、bert 复习总结 1
人工智能·算法
snpgroupcn2 小时前
如何在SAP中实现数据验证自动化?5天缩短验证周期,提升转型效率的3大关键策略
运维·人工智能·自动化
Master_oid2 小时前
机器学习23:对抗攻击(adversarial attack)(上)
人工智能·机器学习
全知科技2 小时前
AI赋能数据分类分级,迈向智能化数据治理
大数据·人工智能
2501_941664963 小时前
人工智能赋能智慧金融互联网应用:智能风控、投资分析与客户管理实践探索》
人工智能