【CE314】Computer Science NLP

Deadline: Please follow deadline on FASER

Build a text classifier on the IMDB sentiment classification dataset, you can use any classification method, but you must training your model on the first 40000 instances and testing your model on the last 10000 instances. The IMDB dataset will be uploaded on the moodle page for you to download.

Your code should include:

1: Read the file, incorporate the instances into the training set and testing set.

2: Pre-processing the text, you can choose whether you need stemming, removing stop words, removing non-alphabetical words. (Not all classification models need this step, it is OK if you think your model can perform better without this step, and you can give some justification in the report.)

3: Analysing the feature of the training set, report the linguistic features of the training dataset.

4: Build a text classification model, train your model on the training set and test your model on the test set.

5: Summarize the performance of your model (You can gain additional marks if you have some graph visualization).

6: (Optional) You can speculate how you can improve your works based on your proposed model.

After you build such a model and test on the test set, you should write a report (no longer than three pages in A4, with Arial 11 fonts) to summarize your work.

(You can use the existing algorithms on github or kaggle, but you must not directly copy and paste their code!

However, you are not allowed to use the Naïve Bayes algorithm and VADER classifier, which practiced in Lab 4)

Suggestion: some bonus points:

Have necessary comments on your code

Have proper reference on your report

Have graph visualization on your report

Investigate more evaluation methods, like not only show the P R F score, but also run multiple times and show the standard derivation on P R F (I am sure you can find more evaluation methods.)

Write your report like a mini-conference paper (you can learn from this paper:

  • Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. 2016. Hierarchical Attention Networks for Document Classification. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies , pages 1480--1489, San Diego, California. Association for Computational Linguistics.
相关推荐
OpenVINO 中文社区3 分钟前
实战精选|如何使用 OpenVINO™ 在 ElectronJS 中创建桌面应用程序
人工智能·openvino
只怕自己不够好8 分钟前
《OpenCV 图像缩放、翻转与变换全攻略:从基础操作到高级应用实战》
人工智能·opencv·计算机视觉
网络研究院14 分钟前
国土安全部发布关键基础设施安全人工智能框架
人工智能·安全·框架·关键基础设施
不去幼儿园2 小时前
【MARL】深入理解多智能体近端策略优化(MAPPO)算法与调参
人工智能·python·算法·机器学习·强化学习
想成为高手4992 小时前
生成式AI在教育技术中的应用:变革与创新
人工智能·aigc
YSGZJJ2 小时前
股指期货的套保策略如何精准选择和规避风险?
人工智能·区块链
无脑敲代码,bug漫天飞3 小时前
COR 损失函数
人工智能·机器学习
HPC_fac130520678163 小时前
以科学计算为切入点:剖析英伟达服务器过热难题
服务器·人工智能·深度学习·机器学习·计算机视觉·数据挖掘·gpu算力
小陈phd6 小时前
OpenCV从入门到精通实战(九)——基于dlib的疲劳监测 ear计算
人工智能·opencv·计算机视觉
Guofu_Liao7 小时前
大语言模型---LoRA简介;LoRA的优势;LoRA训练步骤;总结
人工智能·语言模型·自然语言处理·矩阵·llama