【CE314】Computer Science NLP

Deadline: Please follow deadline on FASER

Build a text classifier on the IMDB sentiment classification dataset, you can use any classification method, but you must training your model on the first 40000 instances and testing your model on the last 10000 instances. The IMDB dataset will be uploaded on the moodle page for you to download.

Your code should include:

1: Read the file, incorporate the instances into the training set and testing set.

2: Pre-processing the text, you can choose whether you need stemming, removing stop words, removing non-alphabetical words. (Not all classification models need this step, it is OK if you think your model can perform better without this step, and you can give some justification in the report.)

3: Analysing the feature of the training set, report the linguistic features of the training dataset.

4: Build a text classification model, train your model on the training set and test your model on the test set.

5: Summarize the performance of your model (You can gain additional marks if you have some graph visualization).

6: (Optional) You can speculate how you can improve your works based on your proposed model.

After you build such a model and test on the test set, you should write a report (no longer than three pages in A4, with Arial 11 fonts) to summarize your work.

(You can use the existing algorithms on github or kaggle, but you must not directly copy and paste their code!

However, you are not allowed to use the Naïve Bayes algorithm and VADER classifier, which practiced in Lab 4)

Suggestion: some bonus points:

Have necessary comments on your code

Have proper reference on your report

Have graph visualization on your report

Investigate more evaluation methods, like not only show the P R F score, but also run multiple times and show the standard derivation on P R F (I am sure you can find more evaluation methods.)

Write your report like a mini-conference paper (you can learn from this paper:

  • Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. 2016. Hierarchical Attention Networks for Document Classification. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies , pages 1480--1489, San Diego, California. Association for Computational Linguistics.
相关推荐
野蛮的大西瓜11 分钟前
开源呼叫中心中,如何将ASR与IVR菜单结合,实现动态的IVR交互
人工智能·机器人·自动化·音视频·信息与通信
CountingStars61936 分钟前
目标检测常用评估指标(metrics)
人工智能·目标检测·目标跟踪
tangjunjun-owen44 分钟前
第四节:GLM-4v-9b模型的tokenizer源码解读
人工智能·glm-4v-9b·多模态大模型教程
冰蓝蓝1 小时前
深度学习中的注意力机制:解锁智能模型的新视角
人工智能·深度学习
橙子小哥的代码世界1 小时前
【计算机视觉基础CV-图像分类】01- 从历史源头到深度时代:一文读懂计算机视觉的进化脉络、核心任务与产业蓝图
人工智能·计算机视觉
新加坡内哥谈技术2 小时前
苏黎世联邦理工学院与加州大学伯克利分校推出MaxInfoRL:平衡内在与外在探索的全新强化学习框架
大数据·人工智能·语言模型
fanstuck2 小时前
Prompt提示工程上手指南(七)Prompt编写实战-基于智能客服问答系统下的Prompt编写
人工智能·数据挖掘·openai
lovelin+v175030409662 小时前
安全性升级:API接口在零信任架构下的安全防护策略
大数据·数据库·人工智能·爬虫·数据分析
唐小旭2 小时前
python3.6搭建pytorch环境
人工智能·pytorch·python
洛阳泰山3 小时前
MaxKB基于大语言模型和 RAG的开源知识库问答系统的快速部署教程
人工智能·语言模型·开源·rag·maxkb